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ABSTRACT

n
. . o . Ayk) = Y g(k)xe k) (1)
This paper is concerned with a linked analysis of overflow i=1
and roundoff errors in fixed-point digital filter realizations. \yhere ¥ means convolution operation ands the
Upper bounds for the overflow error power are obtained, number of nodes. The error soure¢k) has to

having considered saturation quantizer QharaCter'_St'CS'include the effects of roundoff and overflow. As is
Also, upper bounds for the overflow probability are given . : . ;
well known, if the input sequence is white the

in order to overflow power be lower than roundoff noise doff Il enacterized statistically:
power. Finally, computer simulation results support the roundott errors are we acterized statistically, on

theoretical ones, and some of these results are presented iff’€ Other hand, overflow errors are not so easy to
curves for the optimal state-space digital realizations of characterize in the statistical sense.

Butterworth, Chebyshev and elliptic filters. The output error power is the variance &y (k)
and from (1), assuming that roundoff errors are
1. INTRODUCTION uncorrelated with overflow errors, we have
2, =+ ®)

Any digital filter structure can be represented by a
computable signal flow graph [1,2], where branch Whereg; is the roundoff error power araf; is the
transmittances are constants or unit delays and ther@verflow error power, and both depend on the
are no delay-free loops; on the other hand, nodesarithmetic and the quantizer type. Fixed-point
represent sequences or theitransforms. In the  arithmetic and quantizers of saturation characteristic
signal flow graph, two impulse responses can beWwill be considered in this paper. This type of
associated with thigh-node: the sequenégk) is the quantizer is also used in A/D converters for signal
unit-impulse response from the filter input to the processing [3].
ith-node and the sequenggk) is the unit-impulse
response from thigh-node to the filter output. 2. THEORETICAL FORMULAS

The quantization of the operation results in digital
filters conveys a nonlinear process. Consequently, aThe ith-node error sourceg(k) for saturation
digital filter is a nonlinear system; but, under some quantizers is given by
mild conditions, it can be modeled by a linear system
with error sources in each filter r)1/ode. The yerror e;=enu(T-x]) + (- TosgnGe)ulx,|-1) - ©)
sourcee(k) at theith-node can be characterized where the first term of (3) is the roundoff error and
statistically in different ways, depending on the the second is the overflow errog, is theith-node
arithmetic to be used. variable and it is really(k), u (D! is the unit-step

The error sequencay(k), at the filter output can ~ function, sgn(} is the sign function, ie.
be obtained by uy(x)=(sgnx)+1)/2, and Z is the quantizer range.



If 2T is the quantizer dynamic range, we define double precision accumulators (rounding after
the "overflow probability" P, of the ith-node as  summations), we have
follows

1y
P = Prilx|>T}, i=1,2,u,n @) o = 3(r27f ®)

From (3) and (2), supposing thaf(k), i=1,2,...,n where2T2" is the quantization step size.
are white and uncorrelated sequences, the roundoff Finally, from (8) and (7), after some

noise powelo: can be expressed as follows manipulations, we can obtain an upper bound for the
" " overflow probability
a7 =Y (1-P)oy- Y (g4K)’ 2-26-1) \
i=1 k=0 P, < (b-4) 9)
n , , 3
=Y (-P)ay-lg,l (5) P21, 2, ey
=l wheneverb>6.

whereP, was defined in (4)¢? is the variance of,
and |g;|, is thel,-nom ofg,(k), i.e.|g[5=5 |o,(K)]? 3. COMPUTER RESULTS
On the other hand, supposing an input Gaussian
sequence, it is proved in the Appendix that the In order to test fomulas (6) and (9), some computer

overflow error poweo? can be bounded by simulations were carried out, and some results will
. ) s be presented in the following.
2 2. . i First, the overflow error power can be estimated
Ty<2T (121: ”31'”1] siup( 0.)4] (62) from a computer simulation of the filter, whenever
' the roundoff noise power be vanished. So, in
whereo? is the variance of thiéh-node variablex;, fixed-point arithmetic, using a large number of bits
and|g;|, is thel,-nom ofg,(k), i.e. |g;[,=>lg:(K)|. (say 32 bits), the overflow error sequence is obtained
Also, if the overflow error sequencegk) (i=1, by the difference of two output sequences. One
2,..,n are white and uncorrelated wigh(k) for i#j, sequence corresponding to the filter output with high
we have from (Al) and (A4) of the Appendix precision and high dynamic range realization (double
precision floating-point), the other output sequence
2 z 2 P, corresponds to high precision fixed-point arithmetic
°0fS2T2'(Zl: ||gi||2}siup[ )4] (6b) (32-bit fixed-point). The overflow error power is
g : estimated from this error sequence with the

The bound (6b) is verified in some structures for low appropriate length, in order to obtain a good power
overflow probabilitiesP, (say P,<10°%). estimation. For example, if the scalingrameterd

For a given filter structure, it is reasonable to (&=T/g,) is high (low overflow probability), then a
adjust the quantizer dynamic range in order that large sequence length is required (e.gd4b, we

04<0? ; otherwise, overflow errors mask roundoff need more than 10samples). Finally, we can plot
errors. Then, considering (5) and (6a) or (6b)ofpr the overflow error poweraf,) versus the scaling
o?, the following inequalities hold parameter & and, of course, a monotonically
n decreasing curve has to be obtained.
P Y a —Pi)03,-'||g,~||§ o2 For our computer simulation, we have considered
sup LA R < sup—=  (7) Butterworth, Chebyshev and elliptic filters realized
i { (T/o)* L[ 2 i 2T? by optimal [1,2,4] state-space structures (minimum
21" 21: I&;ly roundoff noise structures) with fixed-point arithmetic
=

and saturation-characteristic quantizer. Timput
The second inequality of (7) is a necessary itimmd sequence is a realization of a white Gaussian process
for 07, < 07, and the first inequality is sufficient. with unit power. The results are presented in curves
If the sequence samples are coded-byts (sign of a® vs 8, wherea” is the error power and=T/c,,
included) in fixed-point representation, assuming and some of them are shown in Figures 1 and 2,
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where lowpass filters have been considered with error sequence in thi#éh-node and given by the
optimal state-space realizations and double precisionsecond term of (3), i.ee;=(x;-T[Sgn(x;))u,(Cx,-T).

accumulators (rounding after summations). All filters By the Schwartz's inequality, we have

have the passband cutoff frequeneigs0.2mand the , , L

stopband cutoff frequencias=0.3m, and passband |E{e;(0)-¢;(r-s)}| < sup E{(e; (0))*} (A2)
i

ripple of 0.5dB.

In the Figures we plot theoretical curves ajf Consequently, from (A1) and (A2), we have
for 4, 8 and 12 bits (discontinuous lines), given by I 5
fomula (5). Also, theoretical curves of, bounds 2 ; N2 A3
are shown (discontinuous lines), obtained from (6a) oofs(iz_l:kz_; Ig,-(k)l] su]z-) Eley? “)
for I,-bound and from (6b) fol,-bound, where the
former is much more conservative than the latter. On the other hand, supposing that the node variable
Finally, experimental curves (continuous lines) of the x; is Gaussian,
total erroroj =0+0? are given and, of course, for w
low 3-valueso, =0y and for highd-valuesa; ~o7. El(e/y}=o?+/2]x- f (x-TJo P-exp(-x*/2) dx

As it can be seen from each Figure, a single
decreasing curve corresponding to overflow error
power g’ was obtained (independent of the number and integrating by parts, we have fooBR2
of bits) and it is very tied at tHebound. Also, these , _
experimental results confirn our theory about the Ei(e))* <27 —— (A4)
dependence of the number of bits and the scaling (o)
parameted (or overflow probabilityP,) required for Finally, from (A3) and (A4) we obtain (6a).
diminishing the total error power (e.g. 8 bits require
0=3.5 and 12 bits require>=4.5), and can be
contrasted with expression (9) taking into account ACKNOWLEDGMENT.
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whereE{-} means expectatiorg;(k) is the overflow



