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ABSTRACT

Di�erent options for block 
oating point �lter implementation

are introduced and their e�ciency determined. The e�ciency

is quanti�ed by the additional number of operations over those

required for �xed point operation. Some of the implementations

are new. It is shown that they are more e�cient than the ex-

isting ones. Examples are given in which the processing time

per recursion of a block 
oating point implementation on a �xed

point processor is approximately the same as the recursion time

of the corresponding �xed point implementation. Application of

block 
oating point arithmetic to block implementations is also

considered.

1. INTRODUCTION

Currently, digital �lters are mostly implemented either in

�xed or 
oating point arithmetic. Floating point is charac-

terized by high dynamic range, while �xed point o�ers lower

complexity and therefore lower cost and power consump-

tion. In block 
oating point arithmetic a common exponent

is assigned to a group of variables. Thus the computations

can be carried out in �xed point arithmetic while the expo-

nent can provide the required dynamic range. The applica-

tion of block 
oating point arithmetic has been previously

suggested for a wide variety of signal processing tasks such

as fast Fourier/Hartley transform, direct form �lters [1, 2],

state space �lters [3], and other �lter structures [4]. Also

in [5] the application of block 
oating point arithmetic was

considered for some general computational problems such as

vector orthogonalization, solution of linear systems and oth-

ers. Most of these references concentrate on roundo� prop-

erties of the block 
oating point systems either disregarding

the actual implementation or providing it for a particular

structure only. In this paper di�erent implementations of

block 
oating point arithmetic are investigated in terms of

their complexity i.e. number of operations. Since they can

be e�ciently implemented using �xed point processors the

comparison is based upon �xed point systems implementa-

tion. Usually �xed point implementation requires some sort

of scaling which slows the system down. Unless otherwise

noted the comparison will be based on unscaled �xed point

implementation.

2. STATE SPACE IMPLEMENTATION

Throughout this paper R denotes the set of real numbers.

All vectors x 2 Rn are boldfaced, pij denotes i; j element

of some matrix P and P T denotes the transpose of P .

In this section we propose a procedure for implementing

the state space discrete system

x(k + 1) = Ax(k) +Bu(k) (1)

y(k) = Cx(k) +Du(k) (2)

in block 
oating point arithmetic, which signi�cantly sim-

pli�es the realization suggested by Sridharan in [3], and

improves roundo� properties. Here x(k) 2 Rn�1 is the

state vector, u(k) 2 Rm�1 is the input, y(k) 2 Rp�1

is the output, and A;B;C;D are matrices of appropriate

size. To select a block of variables with a common expo-

nent we write the state space system as x(k + 1) = Fz(k)

and y(k) = Gz(k), where F := [A B], G := [C D] and

z(k) := [xT (k) uT (k)]T . From here we see that we can

introduce a common exponent on z(k), i.e. on x(k) and

u(k).

Usually the coe�cients in block 
oating point �lters are

properly scaled �xed point numbers. However a more nat-

ural choice is to consider F;G as block 
oating point ma-

trices. P is a block 
oating point matrix if it is of the form

P = P̂2EP , where EP is an integer called the exponent of

P and P̂ is a �xed point matrix which is block normalized

meaning that 0:5 � maxij jpij j < 1. From the de�nition of

P it follows that

EP =

�
log

2

�
max
i;j

fjpij jg

��
+ 1 (3)

where b c denotes the 
oor function i.e. bac is the integer

closest to but not exceeding a. The process of obtaining

a block 
oating point matrix from some arbitrary matrix

through a proper quantization will be called block format-

ting.

Using block 
oating point matrices, the system (1,2) can

be written as

x(k + 1) = F̂ ẑ(k) 2Ez(k)+EF (4)

y(k) = Ĝẑ(k) 2
E
z(k)+EG (5)

The new state and output can be computed by �rst comput-

ing the products F̂ ẑ(k) and Ĝẑ(k) in �xed point arithmetic,

then determining the new block exponent Ez(k+1) and �-

nally block formatting z(k + 1). Traditionally, u(k) and

y(k) were represented in �xed point format [1, 2]. However

greater advantages can be obtained if they are in 
oating



point format [4]. First considered is the case when u(k)

and y(k) are in 
oating point format. The �xed point case

follows from there.

The computations in (4,5) can be done using the follow-

ing algorithm which will be called basic. Let Emin be the

minimum representable exponent. Let lm be the available

wordlength and let ma denote the mantissa of a i.e. the

most signi�cant lm bits properly quantized. Ea is the ex-

ponent of a according to (3). fxp(�) denotes �xed point

operation between the arguments as for example fxp(a2Eb)

denotes a shift of a by Eb bits with a proper quantization

afterwards. The guard bits necessary to accommodate the

sum of n+m �xed point numbers in the implementation of

(1,2) are assumed to be present. Assume also that z(k� 1)

is already block formatted. Now we continue with the com-

putation of x(k) and the block formatting of z(k). si de-

notes the state components xi before the block normaliza-

tion. Ed is intermediate variable which eventually contains

Ez(k) � Ez(k�1).

Ed = Emin

for i = 1; � � � ; n

Compute si = fxp

�P
n

j=1
f̂ijẑj(k� 1)

�
Normalize si i.e. �nd msi, Esi
If Ed < Esi then Ed = Esi

end for

E = Ed + (Ex(k�1) + EF )

for i = 1; � � � ;m

If E < Eui(k) then E = Eui(k)
end for

Ed = E � (Ex(k�1) + EF )

With this step we have introduced n normalizations, n+m

comparisons and 3 additions compared to pure �xed point

operation. It is assumed that (Ex(k�1) + EF ) is computed

only once. So far we have computed x(k), Ez(k) = E and

Ez(k) � Ez(k�1) = Ed. In the next step the output y(k) is

computed. First z(k) is block formatted during the compu-

tation of y1(k). ri denotes the output components yi before

normalization.

r1 = 0

E = Ez(k) + EG
for j = 1; � � � ; n

ẑj(k) = fxp
�
msj2

Esj
�Ed

�
r1 = fxp (r1 + ĝijẑj(k))

end for

for j = 1; � � � ; m

ẑj(k) = fxp

�
muj(k)

2
Euj(k)

�E
z(k)

�
r1 = fxp (r1 + ĝijẑj(k))

end for. Normalize r1 i.e. �nd mr1 and Er1
y1(k) is given by my1(k)

= mr1 , Ey1(k) = E + Er1 .

Next we continue with the computation of the rest of yi(k).

for i = 2; � � � ; p

ri = fxp

�P
n+m

j=1
ĝijẑj(k)

�
Normalize ri i.e. �nd mri and Eri
yi(k) is given by myi(k)

= mri , Eyi(k) = E + Eri .

end for.

Comparing with �xed point operation the output compu-

tation requires additional p normalizations, n+m shift op-

erations and n+m+ p+ 1 summations.

The total number of extra operations required by the ap-

proach presented here is 4 + n+m+ p summations, n+m

shifts, n + p normalizations, n + m comparisons. If the

input and the output are �xed point numbers it not nec-

essary to normalize the output variables nor to compare

E with all Eui(k). In this case the number of extra opea-

rations required is 4 + n summations, n +m + p shifts, n

normalizations, n+1 comparisons. This is signi�cantly bet-

ter than Sridaran's approach given in [3] which for a SISO

system, i.e. m = p = 1, introduces up to n2 + 2n shifts, 2n

comparisons, n normalizations and n2 additions. An exact

estimation of the computation time increase is impossible

without considering a speci�c processor.

A similar analysis can show that a pure 
oating point

realization of this system on a �xed point processor will

require up to (n+m�1)(n+p�1) extra additions and the

same number of shifts and normalizations.

3. APPLICATION TO OTHER STRUCTURES

The same approach can be applied to any system of the

form

x(k+ 1) = �(x̂(k); û(k)) 2
E
z(k)+EF (6)

y(k) =  (x̂(k); û(k)) 2
E
z(k)+EG (7)

where �;  , are some functions determining how the new

state and outputs are calculated from the previous one. For

example, for lattice and ladder structures � and  are linear

and the realization (6,7) requires that all coe�cients needed

to compute x(k+1) have a common exponent EF and those

needed to compute y(k) have a common exponent EG. In

all cases the block 
oating point overhead will be the same

as in the state space structures.

Generally the block 
oating point arithmetic is not as ef-

�cient with direct form structures as with the other struc-

tures. The reason for that is the small number of �xed point

operations required relatively to the constant amount of

block 
oating point overhead. If block 
oating point direct

form implementation is really needed Sridaran's method [2]

can be considered.

T1 T2

T

-

�
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? ?
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�21

u(k)

y(k)

Figure 1. Connecting block 
oating point subsys-

tems

The block 
oating point subsystems can be conve-

niently connected even if they do not share a common

exponent. Consider the two subsystems T1(n1;m1; p1)

and T2(n2;m2; p2) of T (n;m; p) given on Fig. 1, where



T (n;m; p) denotes that the system T has n states, m in-

puts and p outputs. These are the parameters which block


oating point overhead depends on. Assume that there are

�12 connections from T1 to T2 and �21 from T2 to T1. De-

�ne � := �12 + �21. Then n = n1 + n2, m+ � = m1 +m2

and p + � = p1 + p2. Using the analyses in the previous

section it can be shown that if these connections transfer


oating point numbers they will require 2�+4 summations,

� shifts, � normalizations, � comparisons more than a reg-

ular single exponent block 
oating point implementation

of T . If �xed-point-number connections are used only 4

summations, maxf�12; �21g shifts and 1 comparison will be

required but the roundo� noise will be larger and additional

care should be taken so that the �xed point numbers are

in the proper range. The case of block 
oating point con-

nections is as complex as the 
oating point case. However,

a substantial simpli�cation is possible, which is considered

later.

This technique may be used for reducing the order of

the �lter components, as in the above example where n =

n1 + n2. It also e�ectively reduces the number of required

guard bits in the summations since they depend on the

order of the (sub)system. It is particularly useful in cascade

or parallel realizations using a block 
oating point unit of

particular order.

4. ALTERNATIVE REALIZATIONS

A few modi�cations of the procedure described in Section 2.

are possible in order to reduce the number of operations at

the expense of roundo� errors or vice versa. For example

a common exponent can be introduced for every row of F̂

denoted by EFi and on every row of Ĝ denoted by EGi .

The overall algorithm is preserved except for substituting

Esi with Esi + EFi and Eri with Eri + EGi . This requires

n+p summations in addition to those required by the basic

method.

Another option is to have di�erent exponents for

A;B;C;D;x(k);u(k). This will introduce 2 additional com-

parisons and 2n shifts in the algorithm. Other divisions

of F and G into block 
oating point matrices can also be

considered. Next, presented are two modi�cations of the

algorithm considered of greater importance.

Preshift method In the method described in Section 2.

the state is essentially �rst normalized so that it can be

saved and then block normalized. This double \normaliza-

tion" can be avoided if we prescale the state components on

every iteration k, in order to avoid mantissa over
ow. This

is similar to Oppenheim's approach in [1] for direct form

�lters. To this end instead of shifting xi by Esi during

normalization and then by Ed � Esi during block normal-

ization we shift them only once by Ed�S during the block

normalization. The constant S :=
�
log

2
(maxẑ k�(ẑ)k

1
)
�

is a scaling factor preventing over
ow. d e denotes the ceil

function i.e. dae is the closest integer greater or equal to a.

In this way we save n summations of Ed�Esi and replace n

normalizations with n exponent determinations which is a

faster operation. Another advantage of this method is that

the guard bits for the summations are not necessary. The

disadvantage is the increase in roundo� noise due to a poor

utilization of the block mantissas.

Table 1. Number of additional operations, �xed

point input and output
Implement. sum. comp. norm. exp. shifts

Basic 4 + n n+ 1 n { n+m+ p

Preshift 4 n+ 1 { n n+m+ p

Inc./Pre. 4 3 { { n+m+ p

The same idea can be used in connecting block 
oating

point subsystems. If the output coe�cients are pre-scaled

so that yi(k) has no mantissa over
ows then y(k) can be

directly inputed to the other subsystem. Note that all yi(k)

have a common exponent Ez(k) + EG. Therefore this pro-

cedure will require at most 4 summations, maxf�12; �21g

shifts and 1 comparison, the same as in the �xed-point con-

nection case.

Increment method With this method the n + m com-

parisons in the determination of the new block exponent

are reduced to 2 + m, using a generalization of Sridha-

ran's approach. Here the block exponent is increased by

one (Ed = 1), if a mantissa over
ow has occurred in si

for some i and decreased by one (Ed = �1), if all si are

in mantissa under
ow. It is assumed that over
ow for

some si and under
ow for all si is detected using 
ags with

no additional comparisons. This requires a modi�cation

of over
ow/under
ow 
ags not present in any o�-the-shelf

DSP processor. However it should be easier to implement

than any hardware implementation of the previous meth-

ods. Note that the increase of the block exponent due to in-

put increase in this case is unlimited. The method requires

that maxẑ k�(ẑ)k1 < 2. To obtain a further decrease of

the number of operations the method should be combined

with the preshift method, with S = 1.

The number of additional operations required by the dif-

ferent methods is summarized in Table 1 for �xed point

input and output. The case of 
oating point input and

output is obtained by adding m + p summations, m � 1

comparison, p normalization, (�p) shifts to every row of

Table 1. The block 
oating point case is given in Table 2.

Table 2. Number of additional operations, assuming

block 
oating point input and output
Implem. sum. comp. norm. exp. shifts

Basic 4 + n+ p n+ 1 n+ p { n+m+ p

Preshift 4 + p n+ 1 p n n+m+ p

Inc./Pre. 4 + p 2 + 1 p { n+m+ p

5. BLOCK IMPLEMENTATION

There is one case of great practical signi�cance. Suppose

we need to implement the SISO system

x(k+ 1) = Ax(k) + bu(k) (8)

y(k) = cx(k) + du(k) (9)

where x(k);b; cT 2 Rn�1; u(k); y(k); d 2 R andA 2 Rn�n.

Let also the input u be in block 
oating point represen-

tation, meaning that fu(kL); � � � ; u(kL + L � 1)g share a

common exponent, where L is the block length. Suppose

that this representation should be preserved in the output



Table 3. Computation time for some �lters (in processor cycles)

Structure unscaled �xed point scaled �xed point preshift, block 
oating point

state space (n(n+ 4) + n+ 13)L+ 3 (n(n+ 4) + 3n+ 15)L+ 3 (n(n+ 5) + 3n+ 41)L+ 3

lattice, all pole (4(n� 1) + 7)L+ 3 (6(n� 1) + 8)L+ 3 (5(n� 1) + 27)L+ 3

y i.e. fy(kL); � � � ; y(kL + L � 1)g should share a common

exponent. This situation arises for example in processing

of audio signals conforming to NICAM (stereophonic sound

system), MUSE (Japanese analog HDTV) or DSR (German

Digital Satellite Radio system), which employ block 
oating

point representation [4].

The problem can be solved by using the basic algorithm

withm = p = 1, followed by block formatting of the output.

A better approach is based on so called block implementa-

tion [6]:

x(kL+ L) = A
L
x(kL) + CuL(kL) (10)

yL(kL) = Ox(kL) +DuL(kL) (11)

where uL(kL) = [u(kL); � � � ; u(kL + L � 1)]T , yL(kL) =

[y(kL; � � � ; y(kL + L � 1)]T , C = [AL�1b; � � � ;b], O =

[cT ; � � � ;
�
cAL�1

�T
]T , and the i; j element of D is given by

Dij =

(
0;

d;

cAi�j�1b;

if i < j

if i = j

if i > j

The realization (10,11) using �xed point arithmetic was pre-

viously suggested for its improved stability and roundo�

properties. For example, the poles of AL are closer to the

origin and if A is normal then AL is also normal. Other ad-

vantages are listed in [6]. However (10,11) is also well suited

for block 
oating point implementation using the preshift

method, with scaling factor

S =
�
log

2

�
max

�
kFk

1
; kGk

1

���
; F = [A

L
C]; G = [O D]

This implementation requires only 4 summations, n + L

shifts, n + 1 comparisons and n exponent determinations

more than a pure �xed point implementation. Although

yL(kL) may not be block normalized, all components of

yL(kL) have a common exponent. That is su�cient for

many applications.

Many other block implementations exist in the literature

and in some of them block 
oating point arithmetic can

be e�ciently applied. This will increase the dynamic range

and will further improve roundo� noise and the stability

properties of the system. The idea of combining \block

implementations" with \block 
oating point implementa-

tions" to the authors' knowledge have not been suggested

before.

6. EXAMPLES

Next we compare the computation time of some �xed and

block 
oating point �lters implemented using the ADSP

2181 processor (Analog Devices) [7]. A nice feature of this

processor is the presence of the instruction expadj which

allows us to determineEd, basically without extra processor

cycles. Due to some restrictions it can be used only with

the preshift method.

The comparison is given in Table 3. Considered are SISO

systems (m = p = 1), with �xed point input and output.

All implementations process L samples from the input. The

scaled �xed point implementation of the all-pole lattice �l-

ter is given in [7, p. 86]. It is clear from the table that in

the above cases the computation time of the block 
oating

point implementations is close to the �xed point, especially

to the scaled �xed point implementation. In fact the scaled

�xed point all pole lattice �lter will run slower for n > 20

than the corresponding block 
oating point �lter.

In general this will not be true. Block 
oating point

�lters are in fact �xed point realization in which the scaling

varies and therefore should run slower. In this particular

case the �xed point implementation uses reformatting of

the coe�cients which is not necessary in block 
oating point

format.

The block implementation of Section 5. was also realized.

The realization with block length L takes (n+L)(4 + n) +

n + L + 46 processor cycles. This clearly beats all state

space �xed point realizations for su�ciently large L.

7. CONCLUSION

This paper shows that the complexity of the block 
oating

point implementations is often very close to the complexity

of �xed point implementation. Sometimes, it can be bet-

ter if the �xed point implementation requires scaling. The

superior roundo� properties of block 
oating point repre-

sentation were already shown in [4]. Block implementations

provide a good way of preserving the block 
oating point

representation of the input, sometimes leading to signi�cant

computational advantages.
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