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ABSTRACT

A new straightforward design of a special class of
elliptic IIR �lters is presented. The major goal is
the complexity reduction of the realized digital �lter.
The multiplier coe�cients are implemented with lim-
ited number of shift-and-add operations. This method
is also called "multiplierless". Unlike classical design,
a closed-form relations are derived giving relationships
between the �lter speci�cation and preferred multiplier
coe�cients. At least a half of the coe�cients can be im-
plemented with the minimal number of shift-and-add
operations without coe�cient quantization. The sec-
ond half of coe�cients can be optimized without any
in
uence on the values of the �rst half of the coe�-
cients. A high attenuation margins and low-sensitive
structures are used so that speci�cation is still ful�lled
after quantization of the second half of the multiplier
coe�cients.

1. INTRODUCTION

The complexity of a digital �lter, when implemented
as a custom or semi-custom integrated circuit, a repro-
grammable logic device or a low-cost micro-controller
without an in-built multiplier, is determined primar-
ily by the number of additions required to implement
multiplication constants. This imposes a requirement
to ful�l given speci�cations with a minimum number
of shift- and add-operations in multipliers, what prac-
tically leads to the implementation of multiplierless �l-
ters. In papers [1] and [2] this problem has been solved
for FIR �lters. As for IIR �lters, it has been shown
in [3] that the use of di�erent wordlengths for cho-
sen coe�cients, in accordance with di�erent magnitude
response sensitivities, can reduce the mean coe�cient
wordlength.
The aim of this paper is to introduce a direct de-

sign method for the elliptic IIR �lters in which each
multiplication constant can be represented in the form:
�1=2p, or �1=2p � 1=2q or �1=2p � 1=2q � 1=2r, p, q,
r integers, what practically yields a multiplierless im-
plementation. This method can also be employed in
designing very complex �lters, because an elliptic func-
tion digital �lter is an optimal solution in very selective
magnitude nonlinear phase and linear phase IIR �lters
[4]. It is shown in the paper that with an adequate

usage of the practically always existing margin in per-
formance, a multiplierless �lter can be obtained by a
convenient choice of the �lter transfer function and the
realization structure matched with it.
The transfer function H(z) is formed by a bilinear

transformation from an analog minimal Q factors pro-
totype [5]. The poles of H(z) are in the z plane on a
circle that is orthogonal to the unit circle and whose
centre is on the real axis [6]. This halves the number of
parameters required for representing the poles in the z
plane: one parameter is common to all poles (the cen-
tre of the circle), and the position of each single pole
is determined by its radius only. The centre of the cir-
cle depends exclusively on the frequency at which the
�lter has a 3 dB attenuation. The square magnitude
response of this �lter has equal pass- and stop-band
tolerances (�p = �a) what gives a very small pass-band
attenuation.

2. IMPLEMENTATION STRUCTURE

The implementation based on the sum of or di�erence
between two allpass functions is used, i.e.
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As known, this is the most economical implementation,
because it requires a total of n multiplications, n - the
�lter order, an odd number. If H(z) is a transfer func-
tion of an odd-order elliptic �lter, it can be presented
in the form:
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If the position of the pole zi is given by zi = ri e
�j�i,

�i and �i are determined from

�
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and

8<
:
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i > 1 (3)

what gives the parameters needed for the implementa-
tion of allpass second-order sections according to [7].



3. DESIGN PROCEDURE

Let the required digital �lter speci�cations be given
with boundary frequencies for the pass-band Fp and
Fa for the stop-band, pass-band ripple Ap and minimal
stop-band attenuation Aa expressed in dB, as shown in
Fig. 1. The �lter speci�cations are ful�lled for various
combinations of the elliptic �lter boundary frequencies
fp and fa. Design margin from Fig. 1 [aa�Aa, Ap�ap,
Fa � fa, fp � Fp] can be used for obtaining a minimal
number of adders in multiplication constants �i and �i.

Figure 1. A typical elliptic �lter

To achieve this, we will divide the multiplication con-
stants into two groups that will be considered sepa-
rately: the �rst group includes �i and the second �i.
It is proved directly that, for the �lter transfer func-
tion proposed in this paper, the constants from the
�rst group are:
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where
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The given Fp and Fa are used to determine the range
of the permissible values of �,

� = cos 2�f
3dB; (7)

tan2 �f
3dB = tan�fp tan�fa (8)

The �rst step is to see if anyone of � from Fig. 2
belongs to the range de�ned in (6), and is also close to
the approximate values (5). Similarly to Fig. 2, Figs.
3 and 4 are created presenting the values which can be
made by the sum or di�erence of two and three coef-
�cients, respectively. The next step is to see if from
Figs. 3 and 4, a value � can be selected such as to
lie in the range (6). This is how the frequency f

3dB
is established. This frequency must remain unchanged
during the entire procedure, whereas fa can be modi-
�ed yet keeping relation (8) satis�ed. The established

value of � is common to all second-order sections and
is repeated (n � 1)=2 times.

Figure 2. f3dB = 1=4��f , � 2 f�1=2pg, p = 0; 1; :::8.

Figure 3. f3dB = 1=4 � �f , � 2 f�1=2p � 1=2qg,
p; q = 0; 1; :::8.

Figure 4. f3dB = 1=4��f , � 2 f�1=2p�1=2q�1=2rg,
p; q; r = 0; 1; :::8.

The procedure for adjusting the second group of coef-
�cients is based on the sensitivity analysis of the trans-
fer function realized by a parallel connection of two
allpass networks, presented in the Appendix. From
equation (A4), the magnitude response sensitivity can



be computed as the product of the �lter re
ectance
function, j sin ((�a � �b)=2) j, and the phase sensitiv-
ity of the corresponding �rst- or second-order section,
@�i(!)=@x. It is evident from (A3) and (A4) that the
magnitude response sensitivity in the pass-band, where
(�a(!)��b(!))=2 � 0, is very low, whereas it is higher
in the stop-band where j�a(!) � �b(!)j=2 � �=2. The
transfer functions of these �lters yield a very small ap,
what permits taking only the stop-band margin into
account in adjusting �i. For stop-band attenuation
minima, maxj�=2� j�a(!) � �b(!)j=2j, are calculated
according to the speci�ed margin, and the approximate
values of coe�cients �i are then determined through a
number of trials. The in
uence of a coe�cient increases
as the appropriate pole approaches the unit circle.

The sensitivity depends on the phase sensitivity to �
and � as shown in the Appendix. It should be noticed
that the in
uence of quantization of � is larger than the
quantization of �, as shown in Figs. 5 and 6. Therefore,
the coe�cient � is determined to exact values without
quantization and realized with small number of shift-
and-add operations.

Figure 5. Phase sensitivity to � for � = �1=2, � 2

f0:1; 0:2; :::; 0:9g

Figure 6. Phase sensitivity to � for � = �1=2, � 2

f0:1; 0:2; :::; 0:9g

4. APPLICATION

The adjustment of the common coe�cient � is inde-
pendent of the �lter order and transition bandwidth.
Practically, this means that (n � 1)=2 coe�cients can
always be represented by a certain number of shifters
and adders. The second group of coe�cients is easy to
adjust for the third-, �fth- and 7th-order �lters. Ex-
plicit expressions for the third-order �lters are derived.
Let start with known �2 = � and �2. Then the

auxiliary values are determined
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From the following relations, the minimal stopband at-
tenuation and the edge frequencies can be determined:

aa = 10 log(1 + L) (13)
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1
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It is shown in Fig. 7 that a very good rather complex
�lters are obtained by a cascade connection of lower-
order �lters owing to the very small pass-band atten-
uation. They are suitable for the implementation of
linear-phase IIR �lters in accordance with [4].

Figure 7. Attenuation of cascade connection of �fth-
order �lters �=-1/2, �1=-1/4, �2=1/2-1/32, �3=1-1/8.

The procedure described is also applicable to half-
band �lters, since their transfer function is also in-
cluded in this class of IIR �lters [8]. In that case,
the coe�cients � equal zero, as the poles are on the
imaginary axis. The procedure proposed in this paper
can also be used successfully for the lattice wave digital
�lter structures from [9].



Table 1. Multiplier coe�cients (� and �) for f
3dB=0.5/3, fp � 0.153, fa � 0.18.

n � �1 �2 �3 �4 ap(dB) aa(dB)

3 -1/2 -1/4 -1/4 0.238 11
5 -1/2 -1/4 1/2-1/32 1-1/8 0.0356 21
7 -1/2 -1/4-1/64 1/4+1/32+1/64 1-1/4-1/8+1/32 1-1/16-1/32 0.0026 30

Examples: Table 1 gives the data for 3 respective
examples of the third-, �fth- and seventh-order �lters
for which f

3dB=0.5/3, fp � 0.153, and fa � 0.18.
As can be seen, a cascade connection of several sim-

ple �lters from Table 1 can yield a high stop-band
attenuation and a narrow transition band, with the
pass-band attenuation remaining low. For example, for
the linear phase �lters from [4], the attenuation values
listed in Table 1 are multiplied by two.

5. APPENDIX

The �rst-order sensitivity of the magnitude response

jS
jHj
x j is de�ned as a partial derivative to an arbitrary

multiplication constant x

SjHjx (!) =
@jH(ej!)j

@x
(A1)

It is given in [10] that the �lter magnitude response can
be expressed by the phase di�erence (�a(!) � �b(!)):
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where �a(!) and �b(!) are the phases of allpass net-
works. Equation (A2) can be written in the form:
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The application of (A1) to equation (A3) leads to the

following expression for S
jHj
x :
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where k = sign(tan((�a��b)=2), @�ai=@x and @�bi=@x
are the phases of the ith �rst- or second-order sections
whitch contains the multiplication constant x.

6. CONCLUSION

This paper presents a straightforward approach for
multiplierless IIR elliptic �lter design.
It is shown that a special class of elliptic �lters, de-

rived from elliptic minimal Q-factor analog prototype,
has poles on a circle in the z plane. The implemen-
tation of those �lters by a class of low-noise compu-
tationally e�cient recursive digital �lters, as parallel
connection of two allpass sections, provides a unique
property of multiplier coe�cients. A half of multiplier
coe�cients are equal to a common constant that is only
function of a single frequency f3dB . By a selection of

f3dB , the frequency at which the attenuation is 3dB,
between pass-band and stop-band edge frequencies in
the transition band, a common constant (and a half of
coe�cient multipliers) can be designed with minimal
number of shift and add operations. This way, the el-
liptic property with a very small pass-band ripple is
obtained without quantization of a half of multipliers.
Using the sensitivity analysis presented in the paper,

the reminding half of multipliers may be designed for a
minimum shift and add implementation. This is easily
achieved for 3rd, 5th and 7th order �lters. Due to a
very low passband ripple, the higher order �lters of a
very good quality can be formed by a cascade connec-
tion of lower degree �lters. This way, a sharp multipli-
erless �lter of higher degree is obtained.
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