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ABSTRACT

Digital �lters where unit delays are replaced with frequency-
dependent delays, such as �rst order allpass sections, are
often called warped �lters since they implement �lter speci-
�cations on a warped non-uniform frequency scale. Warped
IIR (WIIR) �lters cannot be realized directly due to delay-
free loops. Speci�c solutions have been known that make
WIIR �lters realizable but no general approach has been
available so far. In this paper we will explore the gener-
ation of such �lters, including new �lter structures. The
robustness and computational e�ciency of WIIR �lters are
studied and most potential applications are discussed.

1. INTRODUCTION

Several principles of warped digital signal processing have
been published earlier. FFT on a warped frequency scale
was �rst introduced by Oppenheim et al. [1] and warped
linear prediction was published by Strube [2]. A recursive
warped �lter structure was introduced by Steiglitz [4]. Gen-
eralized methods using FAM functions have been developed
by Laine et al. [3]. The idea of warped transversal �lters
has been systematically studied also under the concepts of
Laguerre and Kautz �lters; for good introductions see [5]
and [6].

In addition to the warped FFT mentioned above, there
have been some practical applications of warped �lters such
as modeling the body of the violin [7] and the guitar [9]. Re-
cently we have applied the principles to auditory modeling
[8], to HRTF �lter implementation [11] and to the equal-
ization of the loudspeker response [10], as well as to audio
coding using warped linear prediction [12].

Warped signal processing and digital �ltering principles
remain, however, widely unknown. Especially warped IIR
�lters have not been studied in detail although they re-
veal interesting potential for applications. In this paper we
�rst present the idea of warped �lters using an example of
the warped FIR (WFIR) structure. Then, both previously
known and new warped IIR (WIIR) structures are shown
and analyzed.

2. BASICS OF WARPED FILTERS

The idea of warped �lters is best illustrated using the FIR-
like structures in Figure 1. If each unit delay of an FIR
�lter is replaced with a new delay element so that each new
delay is frequency dependent (dispersive), the �lter can be
designed and realized on a warped frequency scale.
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Figure 1: The principle of warped �lters as an FIR struc-
ture: a) with allpass delay elements and b) as a computa-
tionally e�cient version.

The design of warped �lters may be based on any pair
of functions of complex variable, ~z = f (z) and z = g (~z), so
that functions f (�) and g (�) are one-to-one mappings of the
unit disc onto itself, and z = gff (z)g, i.e., they are inverse
mappings. There exists only one rational function type that
meets the requirement, the bilinear conformal mapping [13],
which corresponds to the �rst order allpass �lter

~z�1 = D1(z) =
z�1 � �

1� �z�1
(1)

where �, �1 < � < 1, is a warping parameter and D1(z) is a
dispersive delay element. Figure 2 shows how the frequency
warping characteristics depend on the parameter �.

We may derive the design of the WFIR �lter in Fig. 1 in
the following way. The desired impulse response h(n) and
its z-transform H(z) must be equal to the impulse response
~h(k) and its z-transform ~H(~z) in the warped domain, i.e.,

H(z) =

1X

k=0

~h(k) ~z�k and ~H(~z) =

1X

n=0

h(n) z�n (2)

Mappings between sequences h(n) and ~h(k) are linear but
not shift-invariant. The �rst form speci�es the WFIR real-
ization (= synthesis) structure yielding

HWFIR (z) =

MX

n=0

~h (n) ~z�n =

MX

n=0

�nfD1(z)g
n (3)

and the second form of (2) yields a method to compute the
WFIR coe�cients (= analysis). It is easy to show from
(1) that both forms of (2) may be computed with the same
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Figure 2: Frequency warping characteristics of the �rst-
order allpass section D1(z) for di�erent values of �. Fre-
quencies are normalized to the Nyquist rate.

warping structure but using coe�cient � for synthesis and
�� for analysis.

Notice also that both forms of (2) yield responses of
in�nite length even if the sequence to be mapped is of �nite
length1 . Since the coe�cient sequence �i must in practice
be of �nite length, we have to approximate ~h (i), e.g., by
truncation (3) or by windowing. The second form of (2),
the `prewarping' of the target response, can also be applied
to the design of warped IIR �lters below.

By expanding the bilinear mapping, inherent in the de-
lays D1(z) of warped �lters, we may|at least in theory|
transform any warped �lter into an equivalent traditional
structure, such as direct form I or II. Warped implementa-
tions have, however, advantages that may compensate for
the extra complexity of the warped delay elements:

� Filters can be designed directly on a warped frequency
scale such as the psychoacoustically motivated Bark
scale [14].

� Warped structures are more robust and require less
precision if the poles and zeros are mapped so that
they are more uniformly distributed over the warped
frequency scale.

� The order of the warped �lter may in some cases be
considerably lower (e.g., 5{10 times in Bark scale
modeling) than a �lter designed on a uniform Hz
scale.

� The warping parameter � may be used as a control
parameter for �lters where the resonances and cuto�
frequencies have to be controlled.

3. DIRECT FORM WIIR FILTERS

A general form for the transfer function of a warped IIR
(WIIR) �lter is

HWIIR (z) =

P
M

i=0
�i [D1(z)]

i

1 +
P

R

i=1
�i [D1(z)]

i
(4)

1Warped FIR �lters have in�nite impulse responses since all-

pass elements are internally recursive. Thus the term WFIR is
somewhat contradictorybut describeswell the structural analogy

to transversal FIR �lters.
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Figure 3: A non-realizable (direct-form II) WIIR structure
from equation (3).

A realization problem appears since delay elements D1(z)
contain a delay-free component as is seen from the form

D1 (z) =

�
1� �2

�
z�1

1� �z�1
� � (5)

Direct implementation of (3), as shown in Fig. 3, is not
possible because the feedback loops contain lag-free paths
when � 6= 0.

There exist several solutions that make WIIR �lters re-
alizable. Strube [2] proposed a structure where lowpass
sections are used instead of allpass delays. This is shown in
Fig. 4a for a warped `all-pole' case. The allpass �lter coef-
�cients �i (Fig. 3) are mapped to another set of coe�cients

i for a realizable �lter structure by formulas (9) and (10) in
[2]. Unfortunately, this works in practice only for low-order
�lters with moderate warping, since a long sequence of low-
pass sections makes the structure ill-conditioned. Problems
arise as well when trying to expand Eq. (3) into a tradi-
tional IIR �lter form. This is due to ill-conditioning of the
bilinear mapping since it creates R zeros at z = �, where R
is the order of the �lter.

Another realizable WIIR �lter is possible using the struc-
ture given in Fig. 4b. It is formulated using delay ele-
ments that have highpass characteristics (for positive �).
The structure is made realizable by the technique that will
be introduced below for WIIR �lters with allpass elements.
This structure su�ers from similar drawbacks as the case of
Fig. 4a.
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Figure 4: Realizable WIIR all-pole �lter (a) with lowpass
elements and (b) with highpass elements.



⊕

⊕

⊕
etc.

in out

D (z)1

H (z)1

D (z)1

–

+

υ

υ




g=1/υ0
1

2

1- λz -1

-12(1- λ  )z

Figure 5: WIIR all-pole structure proposed by Steiglitz.

A more robust realizable WIIR structure that works
also for high �lter orders was proposed by Steiglitz [4]. An
`all-pole' version is shown in Fig. 5. (The feedforward part
of a pole-zero �lter is a straigthforward addition.) The delay
chain preserves the allpass property except for the �rst step
that has lowpass characteristics. A recursion formula for
the computation of feedback coe�cients �i, given in [4], is
exceptionally simple

�R = �R;

�i = �i � ��i+1; i = R� 1; :::;1 (6)

1=g = �0 = 1� ��1;

Now we introduce a new realizable WIIR structure where
the delay chain has full all-pass characteristics. The �rst de-
lay is a unit delay and the other ones are �rst-order allpass
sections. The recursive feedbacks �i of Fig. 3 are mapped
to coe�cients �i which feed back from the outputs of the
unit delays of the allpass sections in order to avoid lag-free
loops. A gain term g = 1=�0 is also needed. The feedfor-
ward part of the WIIR �lter can be implemented directly,
without modi�cations, using �i coe�cients. The resulting
WIIR structure is shown in Fig. 6.

The computation of �i and g can be derived using no-
tations of Fig. 3 as follows:

x0 = in �

RX

i=1

�i xi and xi = yi + � (yi+1 � xi�1)

Terms xi may be eliminated by iterating downwards from
index i = R, �rst writing

x0 = in�

R�1X

i=1

�i xi + � �R xR�1 � �R yR � � �R yR+1

Using SR = �R, �R+1 = �SR, and Si�1 = �i�1 � � Si

x0 = in�

R�2X

i=1

�i xi � SR�1 xR�1 � �R yR � �R+1 yR+1

Substitution of xR�1 and �i = � Si�1 + Si yields

x0 = in �

R�3X

i=1

�i xi � SR�2 xR�2 � SR�1 yR�1 �

R+1X

i=R

�i yi

The iteration is repeated until
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Figure 6: A realizable WIIR structure with �rst-order all-
pass delays and a single unit delay.

x0 = in+ � S1 x0 � S1 y1 �

R+1X

i=2

�i yi

and �nally

(1� �S1) x0 = in� S1 y1 �

R+1X

i=2

�i yi

Thus �1 = S1, gain 
0 = 1=g = 1� �S1, and

x0 = g (in�

R+1X

i=1

�iyi)

When x0 is obtained, the non-recursive part of the �lter
and updating of unit delay states do not cause any realiza-
tion problems. Based on this transform from �i to �i we
may now write an e�cient algorithm for the computation
of the mapping

�R+1 = ��R; SR = �R;

for i = R;R� 1; :::;2

Si�1 = �i�1 � �Si;

�i = � Si�1 + Si;

end

�1 = S1; 1=g0 = �0 = 1� �S1 ;

Equivalently to this, coe�cients �i, k = 0; :::;R+1, may
be computed from �i using explicit formulas:

1=g0 = �0 = 1 +

RX

i=1

�i(��i)
i

�1 =

RX

i=1

�i(��i)
i�1

; and

�k =

RX

i=k

�i(��i)
i�k �

RX

i=k�1

�i(��i)
i�k+2

The method of making warped recursive �lters realiz-
able by moving feedback taps to the outputs of unit delays
is a general and systematic approach that can be applied to
other warped recursive structures as well. Another example
of this technique, applied to warped recursive lattice �lters,
has been shortly discussed in [15].



4. WIIR PERFORMANCE

The added complexity of WFIR and WIIR structures, when
compared to ordinary FIRs and IIRs, may look as extra
computational cost in the implementation for practical ap-
plications. On the other hand, in applications where the
warped resolution yields a natural match to desired �lter
characteristics the order of �lter may be reduced substan-
tially. E.g., in warping to the Bark scale, for full audio
bandwidth, a reduction of 5 to 1 or even 10 to 1 may
be gained which e�ciently counteracts the more complex
structure.

We have estimated the cost of WFIR and WIIR �lters
when using popular DSP processors, such as the Motorola
56000 or the TI TMS320C30. WFIR �lters typically take 3
to 4 instruction cycles per tap compared to 1 for ordinary
FIRs. For WIIR �lters 4 to 5 instructions are needed per
order compared to 2 for direct form II structures. Thus we
may conclude than in best cases WIIR �lters may be 2 to 5
times faster than traditional IIR �lters for purposes where
the warping principle works ideally.

Other performance issues are the robustness and the
precision requirements. Digital �lters are known to be sen-
sitive to precision and quantization e�ects if poles and/or
zeros are located close to each other or clustered in the z-
plane. If the poles and zeros, when mapped to the warped
frequency domain, are more apart, the �lter becomes less
critical. This often happens in warped �lters, especially in
WIIR structures. Our experience shows that in some appli-
cations, e.g., Bark-warped WIIRs of orders higher than 100
to 400 are stable and accurate while equivalent IIR direct
form �lters cannot be realized for orders higher than 20 to
30 when double precision arithmetics is used [8], [9].

5. DISCUSSION

Although introduced long ago, the principles of warped �l-
ters are not widely known and their applications have re-
mained relatively few. Warped �lters may be considered as
hierarchically structured �lters in which the basic building
blocks are �lters themselves. From the viewpoint of possi-
ble transfer functions, warped �lters do not yield anything
that could not be achieved with traditional �lter structures.
However, they reveal interesting theoretical aspects as well
as advantages when used in practical applications. In this
paper we have studied the realization of warped IIR �lter
structures, a task that is not as straightforward as it may
�rst appear.

The WIIR structures studied in this paper were already
found well suited in several audio applications where the
human auditory perception is modeled or where the char-
acteristics of a physical system to be modeled follow similar
guidelines of frequency resolution. Warped �lters are also
interesting in cases where the frequency response|for ex-
ample the cut-o� frequency|must be controlled using a
single parameter.

In addition to further applications, the authors are work-
ing on generalizing the idea of warped �lters. One of the
possible extensions is to apply more arbitrary warping func-
tions, including logarithmically shaped scales and focusing
more resolution to arbitrary parts of the frequency scale.
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