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ABSTRACT

Energy compaction has proven to be an essential concept in

signal-adapted data compression. In particular, optimiza-

tion of orthonormal subband coders for a given power spec-

trum directly leads to optimal energy compaction �lters. In

this paper, we consider some new design methods and prop-

erties of optimal FIR energy compaction �lters. In partic-

ular, we propose a very e�cient method called the window

method for the general M -channel case. The method does

not involve any sophisticated optimization tools and termi-

nates in a �nite number of elementary steps. Compaction

gains achieved by the method are very close to the optimal

ones. As the �lter order increases the �lters of the proposed

method converge to the optimum ideal compaction �lters.

1. INTRODUCTION

The energy compaction problem has recently attracted con-

siderable attention. It is shown that optimal orthonormal

(paraunitary, PU) �lter banks that maximize coding gain

consist of optimal energy compaction �lters [2, 8, 9, 12].

If the number of channels is higher than two, this connec-

tion is made for the case where the �lters are allowed to

be ideal. In the special two-channel case however, even

with FIR constraint, the optimal PU �lter bank problem

is equivalent to the optimal energy compaction problem.

More recently a number of authors have considered the FIR

energy compaction problem [1, 6, 7, 10, 13] (see [5] for fur-

ther references). An M -channel FIR compaction �lter can

be considered as one �lter of an M -channel FIR PU �lter

bank.

In this paper we consider some new design methods for

FIR compaction �lters. In particular, we propose a method

called the window method which has the advantage that

no optimization tools or iterative numerical techniques are

necessary. The solution is generated in a �nite number of

elementary steps, the crucial step being a simple comparison

operation on a �nite frequency grid. Combined with the

fact that the solution is close to optimal, the method o�ers

an attractive alternative to linear programming [6].

z Work supported in parts by O�ce of Naval Research grant

N00014-93-1-0231, Tektronix, Inc., and Rockwell Intl.

2. FIR ENERGY COMPACTION PROBLEM

Let H(z) be an FIR �lter of order N . Consider Fig. 1 where

the input x(n) is a zero-mean WSS random process with

power spectral density Sxx(e
j!). The output of the �lter

x(n) H(z) M y(n)
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In the next section we propose a very e�cient and fast

algorithm (window method) to designM -channel FIR com-

paction �lters for any given input power spectra. This does

not involve numerical optimization techniques such as linear

programming or quadratic constrained optimization, and

has �nite number of elementary steps. Before describing

the method in detail, let us brie
y mention some properties

of optimal FIR compaction �lters:

1. A necessary condition on the compaction �lter

for optimality. For an FIR compaction �lter H(z) to

be optimum it is necessary that the FT of the sequence

r(n)g�(n) attains its maximum at the frequency w = 0,

where g(n) is the impulse response of G(ej!) = jH(ej!)j2.
2. Monotonic behaviour of the optimum FIR com-

paction gain. Let Gopt(M;N) denote the optimum

compaction gain for a given number of channels M and

FIR �lter order N . It is then clear that Gopt(M;N) �

Gopt(kM;N) and Gopt(M;N) � Gopt(M;N + 1).

3. Bounds in terms of eigenvalues. Let fL(n) be any
Nyquist(M) sequence with nonnegative Fourier series coef-

�cients. Assume L > N . Then,

�max

n
r(n)f�L(n)

oN
0

� Gopt(M;N) � �max

n
r(n)

oN
0

: (3)

Here the notation �max

n
r(n)

oN
0

stands for the maximum

eigenvalue of the Hermitian Toeplitz matrix whose �rst row

is [r(0) r(1) : : : r(N)].

4. Upper bound by M . For all FIR compaction �lters

we have

Gopt(M;N) �M (4)

with strict inequality as long as Sxx(e
j!) is not a line-

spectral process, and N is �nite.

For all proofs, see [5].

4. WINDOW METHOD

The idea behind the window method is to represent the

impulse response of G(ej!) = jH(ej!)j2 in the form

g(n) = w(n)fL(n); (5)

where the window w(n) has the same length as g(n), namely

2N +1 and the sequence fL(n) is periodic with period L =

KM � 2N for some K (see Fig. 2).
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2. For each k = 0; : : : ; K � 1, determine the index i0 for

which ŜL(k + i0K) is maximum, and assign FL(k +

i0K) =M and FL(k + ilK) = 0; l = 1; : : : ;M � 1.

3. Determine fL(n) and form g(n) = w(n)fL(n).

4. Spectrally factorize G(z) to �nd H(z).

If the input is real, the above algorithm can be modi�ed

to produce real-coe�cient compaction �lters. In this case

the window w(n) is chosen to be real. Let P = K
2
if K is

even, and P = K�1
2

if it is odd. Then the algorithm for the

real process replaces step 2 by the following two steps:

1. For each k = 0; : : : ; P , determine the index i0 for which
ŜL(k + i0K) is maximum,

2. If k+ i0K = 0 or k+ i0K = L
2
then set FL(k+ i0K) =

M , else if k = 0 or k = K
2
, then set F (k + i0K) =

F (L � k � i0K) = M
2
, else, set F (k + i0K) = F (L �

k � i0K) =M . Set all the remaining values to zeros.

Optimization of the window

If we �x fL(n), what is the best window w(n)? The

objective (1) can be written as

�2y =

Z �

��

Ŝxx(e
j!)W (ej!)

d!

2�
(8)

where Ŝxx(e
j!) is the Fourier transform of f�(n)r(n) where

f(n) is one period of fL(n) centered at n = 0. LetW (ej!) =

jA(ej!)j2, where A(z) =
PN

n=0
a(n)z�n is the spectral fac-

tor of W (ej!). The only constraint on A(ej!) is that it has
to have unit energy in view of w(0) =

R �
��

jA(ej!)j2 d!
2�

= 1.

Hence, by Rayleigh's principle [3], (8) is maximized if A(z)
is the maximal eigen�lter of P. The corresponding com-

paction gain is the maximum eigenvalue of P.

We have described how to optimize w(n) given fL(n), and
vice versa. It is reasonable to expect that one can iterate

and obtain better compaction gains at each stage. We have

observed in most examples that two stages of iterations were

su�cient to get near-optimal compaction gains. We started

with a triangular window and found that fL(n) did not

change after the reoptimization of the window. Notice that,

the use of an initial window is not necessary if one is willing

to use a window after �nding fL(n). However, in most of the

design examples we considered, we have observed that using

an initial window with nonnegative Fourier transform (in

particular, the triangular window) and then reoptimizing

the window resulted in better compaction gains.

Example 1: MA(1) process. Let N = 5; M = 4; r(0) =
1; r(1) = �, and r(n) = 0; n > 1. Assume the process is

real so that r(�n) = r(n). Let the window be triangular,

i.e.,

w(n) =

�
1�

jnj
6
; n = 0; �1; : : : ; �5

0; elsewhere.
(9)

The Fourier transform of r̂(n) = w(n)r(n) is Ŝ(ej!) =

1 + 5

3
� cos!. Hence, the DFT coe�cients ŜL(k) of r̂(n) in

step 1 are ŜL(k) = 1 + 5

3
� cos( 2�

L
k); k = 0; : : : ; L � 1.

Now, assume L = 12 > 10, so that K = 3 and P =

1. So we have the following sets to consider in step 2:

fŜL(0); ŜL(3); ŜL(6); ŜL(9)g; fŜL(1); ŜL(4); ŜL(7); ŜL(10)g

which are evaluated as f1+ 5

3
�; 1; 1� 5

3
�; 1g; f1+ 5

p
3

6
�; 1�

5

6
�; 1� 5

p
3

6
�; 1 + 5

6
�g. First assume � > 0. The maximum

of the �rst set is ŜL(0) and the maximum of the second set

is ŜL(1). Hence applying step 3 of the algorithm we have

fFL(k); k = 0; : : : ; L � 1g = f4; 4; 0; 0; 0; 0; 0; 0; 0; 0; 0; 4g.

This determines fL(n), and G(z) = 1�
p
3

18
z5 + 1

6
z3 + 4

9
z2 +

5(1+
p
3)

18
z + 1 +

5(1+
p
3)

18
z�1 + 4

9
z�2 + 1

6
z�3 + 1�

p
3

18
z�5.

The corresponding compaction gain is 1 +
5(1+

p
3)

9
� '

1 + 1:5178�. An optimum compaction �lter H(z) is ob-

tained by spectrally factorizing G(z). If � < 0, it can be

veri�ed that the resulting �lter will be H(�z) where H(z)
is the solution for the previous case.

For comparison, we have also designed an optimum

compaction �lter using the linear programming technique.

The corresponding compaction gain is approximately 1 +

1:6657j�j. This is achieved by using L = 512 and a trian-

gular window of order L�N � 1. The compaction gain of

the window method is only slightly lower. Let us �nd the

improvement we can get by optimizing the window when we

�x fL(n). The compaction gain is the maximum eigenvalue

of the 6 � 6 symmetric Toeplitz matrix with the �rst row

[1 fL(1) � 0 0 0 0]. This eigenvalue is 1 + 1:8019fL(1)j�j.
Using fL(1) from the above calculations, the improved com-

paction gain is 1+1:6410j�j which is very close to the linear

programming compaction gain 1 + 1:6657j�j.
Given this optimal window, can we improve the com-

paction gain further by reoptimizing fL(n)? In this and

all the other design examples we considered, we used the

triangular window and then found the optimum fL(n), and
then reoptimized w(n) for fL(n). Interestingly enough, the

reoptimization of fL(n) did not change it!

Choice of the periodicity L
Increasing L does not necessarily increase the resulting com-

paction gain. For example using L =1 which corresponds

to using optimum ideal �lter fL(n) for the autocorrelation
sequence r̂L(n) does not result in the best achievable com-

paction gain using the algorithm. This is true even if no

initial window w(n) is used. For the above example, we

increased L to 16 and found that the compaction gain de-

creased! When we used the ideal �lter for fL(n) which cor-

responds to L = 1, the compaction gain was better than

that of the case L = 16 but worse than that of the case

L = 12.

Until this point we assumed that L > 2N . If we use

a period L that is the smallest multiple of M such that

L � 2N , then we obtain very good compaction gains. This

choice can be compactly written as

L =Md2N=Me (10)

If L = 2N , the sequence r̂L(n) has the following �rst period:

fr̂(0); r̂(1); : : : ; r̂(N) + r̂�(N); : : : ; r̂�(1)g: (11)

In this case, we have r̂L(N) = 2r̂(N). This will always be

the case if M = 2, since L = 2N is a multiple of M .

Connection between the linear programming and

window methods



As explained in [5], in the linear programming method,

one �nds a sequence whose Fourier transform is nonnega-

tive only at a prescribed set of frequencies. To assure the

nonnegativity of G(ej!), one modi�es this solution by win-

dowing it. When L is a multiple of M , a periodic sequence

gL(n) in the linear programming method, and a periodic

sequence fL(n) in the window method are found such that

they are Nyquist(M) and their Fourier series coe�cients

are all nonnegative. For L > 2N , two problems are not the

same because gL(n) is necessarily zero for some n, while
fL(n) can be nonzero for all n (except n = kM , of course).

If however L = 2N , then the two problems are exactly the

same! If windowing is done in the same way in both meth-

ods, then we see that the resulting compaction gains should

be the same. Hence, one can view the window method

as an e�cient and noniterative technique to solve a linear

programming problem when L = 2N . If L is inreased,

we saw that the window method does not necessarily yield

better gains whereas this is the case for the linear program-

ming method provided the window order is increased as

well. However, optimization of the window becomes costly

as the order increases. If one uses a �xed triangular window

(with a high order) in the linear programming, and if the

windows are optimized in the window method, then window

method is very close and sometimes superior to the linear

programming method as we demonstrate in the following

example.

Example 2: Comparison of linear programming and

window methods. We have designed compaction �lters

for an AR(5) input. The psd and the magnitude square of

a compaction �lter for (M;N) = (2; 65) designed by linear

programming are shown in Fig. 4. In Fig. 5(a) we plot for
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Figure 4. The psd of an AR(5) process, and the magnitude

square of an optimal compaction �lter designed by linear

programming (M = 2, N = 65).

M = 2, the compaction gains of both the linear program-

ming and the window method versus the �lter order.

The number of frequencies used in the linear program-

ming method is L = 512 while the periodicity used in the

window method is L = 2N . The windows used in the linear

programming are triangular windows with order L�N �1.

In the window method, the autocorrelation sequence is �rst

windowed by a triangular window of symmetric order N to

�nd fL(n) and then the window is reoptimized.

From the �gure we observe that if the order is high,

one has slightly better compaction gains using the window

method. This implies that, if one optimizes the window,

there is no need to use large number of frequencies in the

linear programming method! More importantly, there is no

need to use the linear programming technique for high �lter
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Figure 5. Comparison of the window and linear program-

ming methods. (a) Compaction gain vs. �lter order, M = 2,

(b) Compaction gain vs. number of channels, N = 65.

orders. Notice that for high �lter orders linear programming

method has prohibitively large computational complexity.

In Fig. 5(b), we show the plots of the compaction gains

of the two methods versus M for N = 65. We observe

that the window method performs very close to the linear

programming method especially for low values of M . We

show the upper bounds on compaction gains in both plots.

The upper bound in the �rst plot is achieved by an ideal

compaction �lter and that in the second plot is achieved by

a maximal eigen�lter [5].
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