Figure 1. The FIR energy compaction filter.

is decimated by M to produce y(n). The optimum FIR
energy compaction problem is to maximize the variance
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of y(n) subject to the Nyquist(M) condition [11] on
G(e’*) = |H(e’)|®. Let the impulse response of G(e/*)
be g(n). Then, the Nyquist(M) condition is g(Mn) = §(n).
Notice that by definition G(e’*) > 0. Define the com-
paction gain as
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where o2 is the variance of z(n). The aim therefore is to

maximize the compaction gain. As described in [5], the case
where N < M and the case where ideal filters are allowed
(N = o0) are solved analytically. Our interest is therefore
for the case where M < N < oo. Interestingly enough, the
window method that we propose involves two stages that
can be associated with the above two extreme cases.

3. OVERVIEW AND PROPERTIES

Similar to the IFIR design techniques in conventional filter
theory, one can design the compaction filters in multiple
stages if M is composite, e.g., M = MoM;. This leads to
efficiency in both design and implementation. The details
of multistage compaction are presented in [4] (see also [5]).

For the two-channel case, the optimal FIR compaction
filter can be constructed analytically for some classes of
WSS random processes. The method involves representa-
tion of positive definite sequences and has connections to
other mathematical tools such as line-spectral theory and
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Figure 3. The procedure to find F (k): Sz (0) is maximum
among {S.(iK)}, hence Fr(0) = M, Fr(IK) = 0,1 # 0.
S1.(1+ K) is maximum among {Sr,(1+iK)}, hence Fr,(1+
K)=M, FL(1+1K) =0,l # 1, and so on.

cess for each k = 0,..., K —1, the Fourier series coefficients
of the best fr(n) is determined. The sequence fr(n) can
now be calculated by fi(n) = + MMM Fr(k)yw ",
Algorithm for the window method

Assume a window w(n) of the same length as g(n) with
nonnegative Fourier transform has been chosen. Let L =
KM > 2N. Then the algorithm steps are

1. Calculate Sz (k), the DFT coefficients of 71(n),n =
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2. For each k =0,..., K — 1, determine the index 4o for
which Sp(k + i0K) is maximum, and assign Fr(k +
toK)=M and Fr(k+4K)=0,1=1,...,M —1.

= w(n)fr(n).

4. Spectrally factorize G(z) to find H(z).

3. Determine fr(n) and form g(n)

If the input is real, the above algorithm can be modified
to produce real-coefficient compaction filters. In this case

the window w(n) is chosen to be real. Let P = £ if K is

even, and P = T if it is odd. Then the algorithm for the

real process replaces step 2 by the following two steps:
1. Foreach k =0, ..., P, determine the index 7o for which
St(k + 19 K) is maximum,

2. If k+iK =0o0r k+ 10K = % then set Fr(k+i0K) =

M, else if k = 0 or k = &, then set F(k + ioK) =
F(L—k—ioK) = 4L, else, set F(k +ioK) = F(L —
k —i9oK) = M. Set all the remaining values to zeros.

Optimization of the window
If we fix fr(n), what is the best window w(n)? The
objective (1) can be written as
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where S, (e?%) is the Fourier transform of f*(n)r(n) where
f(n) is one period of fr(n) centered at n = 0. Let W (e/*) =
|A(e?“)|?, where A(z) = Zivzo a(n)z~" is the spectral fac-
tor of W (e/*). The only constraint on A(e/*) is that it has
to have unit energy in view of w(0) = /7 [A(¥)]?42 = 1.
Hence, by Rayleigh’s principle [3], (8) is maximized if A(z)
is the maximal eigenfilter of P. The corresponding com-
paction gain is the maximum eigenvalue of P.

We have described how to optimize w(n) given fz(n), and
vice versa. It is reasonable to expect that one can iterate
and obtain better compaction gains at each stage. We have
observed in most examples that two stages of iterations were
sufficient to get near-optimal compaction gains. We started
with a triangular window and found that fr(n) did not
change after the reoptimization of the window. Notice that,
the use of an initial window is not necessary if one is willing
to use a window after finding fr(n). However, in most of the
design examples we considered, we have observed that using
an initial window with nonnegative Fourier transform (in
particular, the triangular window) and then reoptimizing
the window resulted in better compaction gains.
Example 1: MA(1) process. Let N =5, M =4, r(0) =
1, (1) = p, and r(n) = 0, n > 1. Assume the process is
real so that r(—n) = r(n). Let the window be triangular,
ie.,

_ Il —
wimy = [ 1=1 n=0, 1, 25 (©)
0, elsewhere.
The Fourier transform of #(n) = w(n)r(n) is S(e’*) =

1+ 2pcosw. Hence, the DFT coefficients Sr(k) of #(n) in
step 1 are Sp(k) = 1+ Spcos(®(k), k=0,...,L -1
Now, assume L = 12 > 10, so that K = 3 and P =

1. So we have the following sets to consider in step 2:
{52(0),5¢(3), 5£.(6), S£(9)},{Sr(1), Sc(4), 5(7), S£(10)}

Whichare;valuatedas {1+§p,1,1—§p,1}, {1433 % p,l
5

2p,1—5%2p 1+ 2p}. First assume p > 0. The maximum
of the first set is Sz, (0) and the maximum of the second set
is Sz(1). Hence applying step 3 of the algorithm we have
{Fr(k), k=0,...,L —1}—{440000000004}
This determines fz(n), and G(z) = ‘/_ P+iP2+ 57+
B4VE) ;g 4 BUEYB) -1 42 + 173 4 1g/§z
The corresponding compaction gain is 1 + 5(1+‘/_) ~
1+ 1.5178p. An optimum compaction filter H( ) is ob—
tained by spectrally factorizing G(z). If p < 0, it can be
verified that the resulting filter will be H(—z) Where H(z)
is the solution for the previous case.

For comparison, we have also designed an optimum
compaction filter using the linear programming technique.
The corresponding compaction gain is approximately 1 +
1.6657|p|. This is achieved by using L = 512 and a trian-
gular window of order L — N — 1. The compaction gain of
the window method is only slightly lower. Let us find the
improvement we can get by optimizing the window when we
fix fr(n). The compaction gain is the maximum eigenvalue
of the 6 x 6 symmetric Toeplitz matrix with the first row
[1 fz(1) p 0 0 0 0]. This eigenvalue is 1 + 1.8019fz (1)|p]|-
Using fz(1) from the above calculations, the improved com-
paction gain is 1+41.6410|p| which is very close to the linear
programming compaction gain 1+ 1.6657|p|.

Given this optimal window, can we improve the com-
paction gain further by reoptimizing fr(n)? In this and
all the other design examples we considered, we used the
triangular window and then found the optimum fz(n), and
then reoptimized w(n) for fr(n). Interestingly enough, the
reoptimization of fz(n) did not change it!

Choice of the periodicity L
Increasing L does not necessarily increase the resulting com-
paction gain. For example using L = oo which corresponds
to using optimum ideal filter fr(n) for the autocorrelation
sequence 7z, (n) does not result in the best achievable com-
paction gain using the algorithm. This is true even if no
initial window w(n) is used. For the above example, we
increased L to 16 and found that the compaction gain de-
creased! When we used the ideal filter for fz(n) which cor-
responds to L = oo, the compaction gain was better than
that of the case L = 16 but worse than that of the case
L =12.

Until this point we assumed that L > 2N. If we use
a period L that is the smallest multiple of M such that
L > 2N, then we obtain very good compaction gains. This
choice can be compactly written as

L =M[2N/M] (10)
If L = 2N, the sequence 71, (n) has the following first period:
{#(0),7(1),...,7(N) + 7 (N),...,7 (1)} (11)

In this case, we have 7 (IN) = 2#(IN). This will always be
the case if M = 2, since L = 2N is a multiple of M.

Connection between the linear programming and
window methods



As explained in [5], in the linear programming method,
one finds a sequence whose Fourier transform is nonnega-
tive only at a prescribed set of frequencies. To assure the
nonnegativity of G(e’*), one modifies this solution by win-
dowing it. When L is a multiple of M, a periodic sequence
gr(n) in the linear programming method, and a periodic
sequence fr(n) in the window method are found such that
they are Nyquist(M) and their Fourier series coefficients
are all nonnegative. For L > 2NN, two problems are not the
same because gr(n) is necessarily zero for some n, while
fr(n) can be nonzero for all n (except n = kM, of course).
If however L = 2N, then the two problems are exactly the
same! If windowing is done in the same way in both meth-
ods, then we see that the resulting compaction gains should
be the same. Hence, one can view the window method
as an efficient and noniterative technique to solve a linear
programming problem when L = 2N. If L is inreased,
we saw that the window method does not necessarily yield
better gains whereas this is the case for the linear program-
ming method provided the window order is increased as
well. However, optimization of the window becomes costly
as the order increases. If one uses a fixed triangular window
(with a high order) in the linear programming, and if the
windows are optimized in the window method, then window
method is very close and sometimes superior to the linear
programming method as we demonstrate in the following
example.

Example 2: Comparison of linear programming and
window methods. We have designed compaction filters
for an AR(5) input. The psd and the magnitude square of
a compaction filter for (M, N) = (2,65) designed by linear
programming are shown in Fig. 4. In Fig. 5(a) we plot for
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Figure 4. The psd of an AR(5) process, and the magnitude
square of an optimal compaction filter designed by linear
programming (M = 2, N = 65).

M = 2, the compaction gains of both the linear program-
ming and the window method versus the filter order.

The number of frequencies used in the linear program-
ming method is L = 512 while the periodicity used in the
window method is L = 2N. The windows used in the linear
programming are triangular windows with order L — N — 1.
In the window method, the autocorrelation sequence is first
windowed by a triangular window of symmetric order N to
find fr(n) and then the window is reoptimized.

From the figure we observe that if the order is high,
one has slightly better compaction gains using the window
method. This implies that, if one optimizes the window,
there is no need to use large number of frequencies in the
linear programming method! More importantly, there is no
need to use the linear programming technique for high filter
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Figure 5. Comparison of the window and linear program-
ming methods. (a) Compaction gain vs. filter order, M = 2,
(b) Compaction gain vs. number of channels, N = 65.

orders. Notice that for high filter orders linear programming
method has prohibitively large computational complexity.

In Fig. 5(b), we show the plots of the compaction gains
of the two methods versus M for N = 65. We observe
that the window method performs very close to the linear
programming method especially for low values of M. We
show the upper bounds on compaction gains in both plots.
The upper bound in the first plot is achieved by an ideal
compaction filter and that in the second plot is achieved by
a maximal eigenfilter [5].
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