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ABSTRACT

Windowing is an attractive avenue for
creating asymmetric FIR impulse response
sequences for use as fractional-delay elements.
However, traditional (symmetric) windows are
not usable, leading to a need for offsetting and
purpose-optimization of the windows' defining
parameters. Here it is shown that as few as three
terms of such a modified raised cosine window
deliver enormous improvements over simple sinc
fractional-sample delayors.

Precision control of delay is important in
many signal processing applications, particularly
where signal rendezvous situations are
encountered in two-channel systems or when
direction of arrival to sensors must be measured
accurately.  Although it is a simple matter to
inject delays amounting to integer multiples of
the sampling interval being utilized, physical
delays usually incur a residual extra portion
which is an inconvenient fraction of a sampling
interval.  Fractional-sample delay filters (usually
FIR in nature) utilize standard monorate signal
handling in an attempt to perform the required
signal interpolation.  A superb overview of
fractional-delay filters and the design issues
involved can be found in [1].

Relatively little work  has been done in
harnessing  windowing strategies for the
fractional-delay task [2]-[6], despite their
simplicity and evident appeal when real-time

updating of filter coefficients must be undertaken
in order to track varying fractional delay.  This is
important because it is rare that the exact
residual delay can be predicted for any physical
signalling environment and, in any event,
fluctuating physical transmission mechanisms will
often lead to significant departure from nominal
design assumptions (on the scale of a fractional-
sample interval).  Therefore, robustness and easy
re-design/adaptability are at a premium in this
application area. In this regard windowing clearly
has a lot to offer since it is quick and flexible.

This paper re-visits the popular raised-cosine
family of windows and elaborates the work in [6]
in three directions:

• Extends to a three-term fully optimal window

• Confirms that variable fractional delay can be
satisfactorily accommodated (for fixed
commitment of filter dimensionality and
measurement bandwidth) with an extremely
simple window expression.

• Quantifies the shortfall experienced when
simple approximations are employed to cut
down optimization burdens when filter sizing
and measurement conditions are allowed to
sweep widely.

We start with a desired ideal transfer function

D e j( )ν πβν= − 2 (1)

which our N-coefficient FIR filter must closely
approximate.  Here, ν  is normalized frequency
and



β α= + r (2)

utilizes the customary mid-sequence delay
measure α=(N-1)/2 and r is the fractional delay
being sought.  It is sufficient to focus on
r ∈ −[ . , . ]0 5 05 .

With k as the time index for our FIR
coefficients and the popular starting point

h k k k Ns ( ) sinc( ), , , ...= − = −β       0 1 1      (3)

we have a crude fractional delayor which is
serviceable, but far from worthy of a high quality
designation.  It can be massively improved by
undergoing windowing:

h k h k w ks( ) ( ) ( ; )= β    (4)

Although standard windows (such as
Hamming) can be brought into this role, their
grounding in "linear-phase" conditions (and
hence patterns symmetric about α) weakens their
usefulness in this inherently "lop-sided sequence"
context.  Familiar symmetric windows need
themselves to be subjected to desymmetrizing in
order to yield best results [2]; such a class of
"offset windows" is signified by the β
dependence in the w symbol given in (4).

In Figure 1 we show the effects of two
traditional windows (von Hann and Blackman-
Harris) which have been offset, as well as two
purpose-optimized windows which form the
main thrust of this paper.  We extract for
measurement only the peak of the complex
approximation of D(ν) (in dB) encountered over
a given frequency band.  It is a fact of life that
fractional-delay filters are very good in the
vicinity of d.c. and inevitably bad at Nyquist
frequency.  Figure 1 shows this very well, with
even the humble untreated sinc filter (top trace)
plunging toward perfection near d.c. yet climbing
toward that magnet of Nyquist-frequency
misbehaviour known as the "Tarczynski bound"
[7], which equates to -1.84dB for the N=21,
r=0.2 case depicted in Figure 1.  Measurement

bandwidth (MBW) represents the endpoint of the
interval (commencing at the easy d.c. end) and is
vitally important when quantifying the goodness
of a fractional-delay filter.  Clearly when MBW
is made small (say 0.1) almost any windowing
strategy can reap massive benefits. Offset von
Hann provides about 47dB improvement over
the bare sinc at MBW=0.1, and Offset
Blackman-Harris does some 9dB still better than
that!

MBW, normalized frequency
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 Figure 1   Error Profile for Several Delayors
(N=21, r=0.3)

Demanding good behaviour from d.c. up to
ever-higher MBW bandedges is where the
difficulty comes in.  The MBW value chosen as
the edge of the constrained behaviour interval for
optimization action is called the Design
Bandwidth (DBW).  Notice the long flat plateaus
of peak error that our two custom-optimized
windowed filters furnish, managing only slow,
reluctant growth upward until their constraint
DBW of 0.35 is met, (the MBW coinciding with
DBW is indicated by circles) after which point
their errors rocket out of control.

Our concern is with such controllable plateaus
and raised-cosine windows which deliver them.
The chosen class of  windows is defined by



( )w k Cm

m

I
m k

N( ; ) cos ( ) ( )β π β= − −

=
∑ 2 1

1

       (5)

with the only requirement being that the Cm's
sum to unity.  Thus an optimal two-term window
will require optimization only of C1, while a
three-term window (I=3) requires C1 and C2 to
serve as the optimization variables.  The gap
sizes in Figure 1 reflect the general truth:  the
best two-term window gives a gigantic
improvement over the sinc delayor alone, and
more (but relatively less) performance is bought
by going to the best three-term window.  We
have found that numerical difficulties (using
MATLAB's Optimization Toolbox and NAG
Foundation Toolbox facilities) set in for higher I,
making even reliable four-term Cm's
problematical. In this paper we will restrict
consideration  just to I=2 and 3, favouring - of
course - the  three-term case for the excellence
of results it can deliver.
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Figure 2   C1 Variation with N (r=0.25)

Figure 2 illustrates the profound effect of
DBW on just the C1 weight factor when I=3.  In
this view fractional delay is fixed, and we see
clearly how demands for wide bandwidth fidelity
(elsewhere [2] we have dubbed DBW=0.45
"wideband" design and DBW=0.25 "halfband"
design) inhibits convergence of C1 to its
"natural" large-N asymptotic value of 0.375.

We have found in the experiments
underpinning this paper that (virtually
independent of r) the asymptotic window weight
values are
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Figure 3   C1 Variation with r (N=21)

Figure 3 examines variability, with fractional
delay, for a situation (with N=21) sized well
below the large-filter asymptotes observed in
many experimental runs.  Again the DBW
stratifications are familiar echoes of Figure 2; the
leftmost inset is a blowup which shows very
slight sensitivity to r.  Such variation seems to be
limited to the third decimal point of the Cm's,
comfortably below about 1% of their optimal
values.  This is a godsend in practical application
scenarios, permitting us to optimize to a mid-
range situation of r=0.25 and then commence
operation with no special regard to the β value
being demanded by tracking/adaption
procedures.  Notwithstanding the slight Cm

sensitivity, the peak error inset in Figure 3
discloses that there is still a peak error price (on
the order of 18dB) to be paid.  Disregarding this
loss, we opt for operational convenience where
all we need do is change β in (3) and (4), but
leave the Cm's unperturbed!
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Figure 4   Error Improvements

Figure 4 exhibits the optimum peak error
obtainable for a range of investments in filter
dimensionality.  Here we have adopted the
"middle-of-the-road" parameters DBW=r=0.25,
for a good representative snapshot of what can
be achieved.  Note, for instance, that a 50-
coefficient delayor experiences some 60dB
reduction of its peak error by virtue of optimal
two-coefficient windowing, and deployment of a
single additional optimal windowing weight
secures a further 48dB of improvement!  The net
result is an easily-implemented scheme that
performs in a manner comparable to delayors
where considerably more computational effort
(on all N filter coefficients) is needed in various
alternative optimization strategies [1], [7].

In Figure 5 we take one further (but dramatic)
step toward operational simplification,
overlaying two additional curves onto Figure 4's
plots:  those arising from application of the
highly streamlined situation (asymptotic) of (6).
Although we incur inevitable sacrifices in
performance (about 9dB for N=50 in the two-
term window case and about 21dB when three
terms are used), the quality of filters obtained in
this family is still extremely good.  Thus, even in
this most "optimization-blind" simplification,
offset windowing convincingly proves its worth.
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Figure 5   Easy Error Compromises
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