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Abstract

In this paper, the class of discrete linear systems is
enlarged with the inclusion of the discrete-time fractional
linear systems. These are systems described by fractional
difference equations and fractional frequency responses. It
is shown how to compute the impulse response and
transfer function. The theory is supported by the Cauchy
integrals that perform projections of the frequency
response into or outside the unit circle. The presented
formalism is similar to the usually followed

1. INTRODUCTION

Fractals, fractional noises, 1/f noises, fractional
differencing became keywords of a lot of published works.
This is due to the great importance in practice. In
particular, the called 1/f noises are very frequent [3].

In a previous paper [5], we presented an
introduction to the fractional continuous-time linear
systems. As referred there, those systems may be suitable
for modelling several signals and systems found in
practice like: fractals, fractional noises, 1/f noises, etc.
There are other similar situations where the continuous-
time approach is not suitable; for example in hydrology
and cconomics there are time series with fractional
characteristics that are not well fitted by the usual ARMA
models [2]. The results obtained for continuous-time
fractional systems motivate us to consider the discrete-
time counterpart [6]. The notions of delay and lag are
defined usually only for multiple integer of a given time
interval, as shown in the following table.
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Essentially and by analogy with the fractional
differintegration [5], we would like to generalise that
notions to admit fractional delay and lag (delag). In other
words we would like to obtain sequences d.(n): bilateral,
with ¢®* as FT, or causal, and anti-causal, having z*“ as Z-
Transform (ZT). The first case is well known [4,6] and is
stated in the following definition of fractional delay and
lag (delag):
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where aueR and neZ. This equation expresses a relation
between two signals x,, and y,, = X, defined in the sets Z
and { m: m=n+a, neZ and xR}, respectively. So, we
are relating two signals defined over two different time
grids, obtained one from the other by a fractional
translation. The relation (1) is a convolution of X and a

h,(n) given by:
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which can be considered as the impulse response of a
reconstruction filter, h,(n), such that x.., = x,*h,(n).
Remark that

a) This filter is non causal and IIR.

b) We did not introduce any restriction to the
delags.
We can write (1) in the form:

Xt = Xp*Og(11) 3)
where we represented h,(n) by 8,(n):
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If o is greater than 1, we can put o=k+v and we will

obtain:

sin[n(atn+k)]
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Return to equation (1) and apply the FT to both members.
We obtain
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generalising a well known result. The next steps lead us
to try a similar definition concerning the delag in the
context of the Z Transform (ZT). Unfortunately, there are
no causal nor anti-causal sequences having a ZT equal to
z* (|z|#1). This important fact forces us to use another
way: the Cauchy integrals. These are essentially operators
that perform a projection of a function defined on the unit
circle over the regions outside (causal case) or inside
(anti-causal case) the unit circle. Consider a function g(w)
defined on the unit circle. Let L will be the open unit
circle {z: z=¢", me[-n,x[}. This circle decomposes the C
plane into two regions: the interior C; = {z: |z| < 1} and
the exterior C.={z: |z]>1}.

We define the Cauchy problem as consisting in the
determination of two functions, G and G' defined and
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continuous over CiuL and C.UL, respectively, analytic
inside their domain, and verifying:
G@+ G =g@ Vze L @)

We can consider G and G' as extrapolations of g(z) for
the interior and exterior of the unit circle. These are given
by:
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In other words, we found out how to compute the ZT of
the causal part of a given signal, from its Fourier
Transform.

2. FRACTIONAL SYSTEMS

The theory we have just presented allows us to treat the
Linecar Time Invariant Systems characterised by a
difference equation like:
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We will give the name “Fractional Autoregressive
Moving Average (FARMA) Systems”. We must consider
two cases: the general FARMA case and the particular
FMA (fractional MA) case. Let h(n) be the inverse
Fourier Transform of H(¢"®) («=1). The FT of x(kaT) is
given by:
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For the proof we remark first that
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So,
FT[h(ko)= f { ek J"’k}{z h(m)e” } dw
and
FT[h(kko)] = f d(o-wo) H(w) dw (14)

-T
Making wo=n, adw=dn, and
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leading immediately to the result stated above. We must

remark the limitations imposed in eq. (14) that show that,

in general, H(€“*) in (11) is not the FT of h(n/x). This

happens only when a<1.

3. COMPUTATION OF THE IMPULSE RESPONSE

The well known results on the geometric series
1
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is very useful to obtain the impulse responses of the causal
systems described by the difference equation (10). In the
following we will show how to do it. The simpliest case is
the FMA case, because the Transfer Function is given by:
M .
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We only have to use (17) and (16) into (8) to obtain H'(z).
We have:
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with 8,,,(n) given by (2). So, the impulse response is:
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If o is rational, a=p/q, it is not difficult to obtain
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If a=1, g=1 and we obtain the usual response

corresponding to a FIR system. It is interesting to remark
that, if q=1, the system is nor a FIR, but a IIR, and its
Impulse Response goes to zero with n—oo, but

! the symbol |. ] means integer part.



hyperbolically, not exponentially. Next we are going to
consider the general FARMA case. Without restriction we
may assume that the fraction in (11) is proper. The
computation of the Impulse Response follows the steps:

a) Consider the function H(w), by substitution of
w for z* .

b) The polynomial denominator in H(w) is the
indicial polynomial or characteristic pseudo-polynomial.
Perform the expansion of H(w) into partial fractions like:
Fw) (l-a.whk @D

¢) Substitute back z* for w.

d) Compute the Impulse Responses corresponding
to each partial fraction;

¢) Add the Impulse Responses.

The kernel of the problem is in the partial fraction
inversion. We are going to proceed to the inversion of the
partial fraction (21) with w=e!**. Let us consider the case
k=1. The convolution properties can be used in the case of
a k>1. Alternatively, we can relate (21) with the (k-1)th

derivative of 1 and use the differentiation property

l-aw
of the Z-transform. Now, the problem resumes in the
computation of the inverse ZT of:
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Assume that |aj<1. In this case, we have:
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and, using (16):
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So, the corresponding Impulse Response is:

h'(n)= ¥ ak.S_ka(n) n>0 (25)
k=0

That is the discrete analogue to the Mittag-Leffler
function, used in the fractional continuous time linear
systems [6]. It is interesting to remark that this case can
be obtained from (19) with M=o and b,, an exponential
sequence. If o is rational, a=p/q, put v=1/q, with g=1. In
this case we can obtain a different result involving
fractional delags less than 1, as in (20). We only have to
show the validity of the following formula:

q-l i —j100
S a.el

|
l-a.e?* l_aqe-jmp

(26)

To obtain it, we only have to sum up the expression in
the numerator. On the other hand, |a] <1 allows the use of
the geometric series propertics to obtain:
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Its insertion into (22) leads to:
q-1 +oo -
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The ZT of this function is not elemental. Remark that this
Impulse response goes to zero exponentially and

hyperbolically.

4. STABILITY OF FRACTIONAL SYSTEMS

The stability of fractional linear time invariant
discrete-time systems is easy to study, attending to the
way in which we obtain the impulse response. In fact, we
transformed the denominators in rational functions of z .
The properties of the response corresponding to each
partial fraction depend on the poles, as in the non
fractional case. So, to test the stability of the fractional
linear systems we only have to check if the poles are
outside of the unit circle. Making w=z" in (11) we reduce
the stability test to the usual Jury case.

5. EXAMPLES

We are going to present some simple examples to
illustrate the theory we presented.
1 - FMA case

To illustrate this case we computed the Impulse
Response of a FIR filter with Frequency Response
represented by a plain line («=1) in figure 1, where we
represented Frequency Responses corresponding from
outside to inside a=1/3, 1/2, 1, 3/2, 4/3. In figure 2 we
show the corresponding Impulse Responses [a=1/3, 1/2, 1
in the upper half picture and o=3/2, 4/3 in the other].
These and other similar results we obtained show that the
FMA systems are also FIR.
2 - FAR case

In this example we will present a system with a
pair of complex conjugate poles.

oo 1 1
H(e™) = lac™ g o™

29



1.2

Figure 1 _
Accordingly to (28) and putting a=p.¢”, the Impulse
Response is given by:

h'(n) = 2. ; pk.cos(ek) Bao() n=0 (30)
k=0

or, if oo is rational, by:
q-1+o0
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In figure 3, we present an illustration of this function for
the previous values of o.
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6. CONCLUSIONS

We presented an introduction to the theory of
Fractional Discrete-Time Linear Systems. We showed
how to compute the Impulse Responses from the
Frequency Response. We made a brief study of the
stability. There are other interesting problems not focused
in this paper that will be subject of study in future
publications. In particular, we refer the initial condition
problem and the fractional order poles and zeros.
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