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ABSTRACT

This paper presents a new algorithm that can solve the
problem of selecting appropriate update step size in the
LMS algorithm. The proposed algorithm, called a Comple-
mentary Pair LMS (CP-LMS) algorithm, consists of two
adaptive filters with different update step sizes operating
in parallel, one filter re-initializing the other with the bet-
ter coefficient estimates whenever possible. This new algo-
rithm provides the faster convergence speed and the smaller
steady-state error than those of a single filter with a fixed
or variable step size.

1. INTRODUCTION

In adaptive filtering, the LMS algorithm is very popular for
its simplicity and predictable behavior, but the compromise
must be made between the convergence ( tracking ) speed
and the steady-state error. This is because the LMS algo-
rithm updates the adaptive filter coefficients with a term
whose magnitude is proportional to the so-called step size
p. To obtain the fast convergence speed, u has to be rela-
tively large but using a large u produces a large steady-state
error. To obtain the small steady-state error, p has to be
relatively small but using a small 4 makes the convergence
very slow [1].

To solve this problem, many variable step size algorithms
[2] [3] [4] [5] [6] that try to achieve both the fast convergence
speed and the small steady-state error have been developed.
However, the performances of these algorithms are highly
dependent on the algorithm parameters which are selected
without specific rules.

To provide strictly controlled performance and to elim-
inate the conflict between the accuracy and the speed as-
pect, we introduce a new adaptive filtering algorithm called
a CP-LMS ( Complementary Pair LMS ) algorithm. The
new algorithm uses two adaptive filters operating in parallel
with different step sizes. The estimation errors of two filters
are compared, and the coefficients of one filter is used for
re-initializing the other filter to speed up the convergence (
tracking ) speed.

2. ADAPTIVE FIR FILTERING

Let #(n) be the input for a unknown system H, which is
modeled by the filter coefficient by, 0 < k < K. Then the

output y(n) of H is given by

y(n) =Y bea(n — k) =x"(n)b (1)

where

x"(n) [z(n) z(n—1) ...
b" = [bo b1 ... bx].

z(n—K) ]

Usually y(n) is corrupted by zero-mean additive noise
v(n), so the observed output of H is given by

d(n) = y(n) +v(n) . (2)

In the system identification configuration [1], the input
to the adaptive FIR filter is x(n) and the filter output z(n)
is

2(n) = be(n)a(n — k) = x"(n)b(n) (3)

where
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The adaptive filter coefficients I;k(n), 0 < k < K are
estimated such that the difference between d(n) and z(n),
defined as the estimation error

e(n) = d(n) - z(n) , (4)

approaches zero.

The most popular adaptive FIR filtering algorithm is the
LMS ( Least Mean Square ) algorithm [1], which uses the
coefficient update equation :

b(n + 1) = b(n) 4+ pe(n)x(n) . (5)

3. COMPLEMENTARY PAIR LMS

A single adaptive filter with a fixed update step size u
poses the following problem. To obtain the fast conver-
gence speed, p has to be relatively large but using a large
p produces a large steady-state error. To obtain the small
steady-state error, u has to be relatively small but using
a small p makes the convergence very slow. To solve this



problem, we employ two adaptive filters with different up-
date step sizes operating in parallel, complementing each
other.

Fig. 1 shows the block diagram of the CP-LMS algo-
rithm. One filter which has the larger step size p. for the
fast convergence speed is called the speed mode filter, whose
coefficients are updated by

Ba(n + 1) = bu(n) + pecs(n)x(n) (6)

where )

es(n) = d(n) — x" (n)bs(n) . (7
The other filter which has the smaller step size p, for the
small steady-state error is called the accuracy mode filter,
whose coefficients are updated by

Ba(n + 1) = ba(n) + paca(n)x(n) (8)

where )
ea(n) = d(n) = x" (n)ba(n) . (9)

The two filters operate in parallel, and e.(n) and e.(n) are
supplied to the controller that re-initializes the accuracy
mode filter. ) )

This re-initialization controller replaces bo(n) with b.(n)
for every M-th coefficient update, if the local average of
e2(n) is less than the local average of €2 (n) for .J consecutive
comparisons with interval length M. This re-initialization
of the accuracy mode filter can be mathematically expressed
as

bs(n + 1)
if n(mod M) =0 and
Ba(n+1) = [, Qn—jM) =1 (10)

Ba(n) + paca(n)x(n)

otherwise

where M is the comparison interval, J is the number of

comparisons, and @(m) is a two-valued function defined as
Lo e < LY )

Q(m) = (11)

0 otherwise .

Since Q(m) is evaluated only once in every M updates and
the past values of Q(m) can be saved, the total computa-
tions needed for the CP-LMS is 4K + 4 multiplications and
4K + 2 additions per update.

The size of M should be sufficiently large, M > 1, so
that the statistical average of e2(n) and e2(n) can be ob-
tained. Also, M should be much smaller than N, M < N,
where N is the length of the training input #(n), so that a
sufficient number of re-initialization is possible. Therefore,
the comparison period M must satisfy the inequality

1€« MK N . (12)

A simple choice for M is M = /N which satisfies (12) and
shows good performance in simulations.

The number J should be chosen according to the training
input length and the noise levels. The total comparison

length JM should be much smaller than N, JM <« N,
so that a prompt re-initialization is ensured. If we have
chosen M = \/N7 then this leads to the condition J < M.
For low SNR, we must have J 3> 1, so that the mistaken re-
initialization, due to the noise signal, is avoided. Therefore,
under low SNR, the number of comparison J must satisfy
inequality

1€ J<« M. (13)

For high SNR, we can choose J close to 1 for more fre-
quent re-initialization, since the probability of mistaken re-
initialization due to the noise signal would be small. This
means J only have to satisfy

1<J <M. (14)

The simulations show that, for SNR of 30 dB, the value
J = 3 is found to be sufficient.

The re-initialization of the accuracy mode filter occurs
when b.(n) approaches faster to the true value b than b.(n)
due to the larger step size p.. Since the accuracy mode filter
is re-initialized with better coefficient estimates whenever
possible, the convergence can be reached in shorter time
with the desired accuracy set by the smaller update step
size fg.

The step size ps could be large as long as stable conver-
gence is maintained. The upper bound of p. is given by a
well-known inequality [7]

1 1
Hs < trE{x(n)XT(n)} = IX’E{ZQ(H)} (15)

where K is the vector length of x(n).

The step size pq could be small as long as convergence
can be reached within the given training signal length N.
Since the total absolute sum of the expected update terms
must satisfy

N-1
D 1B {paca(n)z(n = k)}| > |be] (16)
n=0

we can write

N (nav/ZE{E )} EGE (=R} ) > ] (17)

where we have used a cross-correlation property [8]

|E {ea(n)a(n — k)} < /E{e2(n)} E{a2(n—k)} (18)

and an assumption F {ei(n)} < 2F {d2(n)} If |be| <1,
then the sufficient condition for pq can be derived from (17),
which is

1
Ha > . 19
NREE )} Bl () 1)
Combining (15) and (17), we get
1 1
— g < e < — 20
N\/icrdcrm H H Ko? ( )

where 03 = E{d*(n)} and o2 = E{s*(n)}. However, p,

must be much smaller than ps so that the accuracy mode



filter have substantially smaller steady-state error than the
speed mode filter, but using step sizes near the lower and
the upper bound tend to produce unsatisfactory results.
Therefore, more realistic condition for p, and ps is

1
a kS = . 21
Lo pte € 75 (21)

1
N\/icrdcrm
4. ALGORITHM BEHAVIOR

To examine the behavior of the CP-LMS algorithm, we ob-
tain the estimation error vectors

—b (22)
-b (23)

from f)s(n) and Ba(n) Also, we assume that the training
input signal and the coefficient estimates are uncorrelated.

Combining (1), (2), (6), (7), and (22), we can construct
the recursive equation of p.(n) such that

(1= pox(m)x” () pe(m) + (o) - (24)
Thus, the mean behavior of p.(n) is described by

E{p:(n+ 1)} = (I - p:R)E{ps(n)} , (25)
where R = F{x(n)x" (n)}.

The mean behavior of pa(n) is more complicated due to
the re-initializations, and is described by

E{ps(n+1)}
if n(mod M) =0 and

ijzl Q(n_]M) =1 (26)
(I - NaR)E{pa(n)}

otherwise

ps(n + 1) =

E{pa(n+1)} =

1if M Bl () —€2(1)) < 0
Q(m) = (27)

0 otherwise .

To get some meaningful insight of the mean-square be-
havior, we assume x(n) is a white gaussian signal, so that
R = 02I. Then, using (24), we can calculate E{pZ(n +
1)p:«(n + 1)}, which reduces to

E{|lps(n+ DII*} = BE{|[p<(n)I"} + Kplogor  (28)

«)|I* = pl(n)ps(n), o7 = BE{v’(n)}, and 8. =
1—2p.0% + (K 4 2)plos.

Incorporating the re-initialization operations, the mean-
square behavior of p.(n) is described by

E{|lps(n+ 1)|| }
if n(mo M) 0 and

szlQ M)=1

BaB{|[pa(n)II"} + Kpiosor

otherwise

E{llpa(n +1)|I"} =

(29)

where 3, = 1 — 2uq02 + (K + 2)uiai.
From (25), (26), (28), and (29), we can extract the steady
state properties of the CP-LMS algorithm, which are

E{p.(x)} = 0 (30)

E{pa(>)} = 0 (31)
B} = sy @)
B{lpa(oo)l} = —HeT_(33)

2 — (K + 2)paq0?

5. SIMULATIONS

The computer simulations are carried out to investigate
the performance gains obtained by using the CP-LMS algo-
rithm. The performance is measured with the norm squared
estimation error

[Pa(n)||* = lIb = ba(n)|[* . (34)

The compared algorithms are the LMS algorithm with
¢ = 0.001, the LMS algorithm with ¢ = 0.01, the CP-LMS
algorithm with p, = 0.001, u. = 0.01, M = 100, J = 3, and
the variable step size (VSS) algorithm [4] which employs a
variable step size p(n) defined as

Hmazx
pn+1) = { Hmin
a(n) + 1 (n)

if p(n) > pmaz
if u(n) < phmin (35)
otherwise

where pimaer = 0.01, timin, = 0.001, @ = 0.97, v = 0.00048,
and e(n) is the estimation error [4].

The training input z(n) of length N = 10,000 is a white
gaussian pseudo-random sequence with E{z(n)} = 0 and
E{2*(n)} = 1. The additive noise v(n) is also a white
gaussian pseudo-random sequence with E{v(n)} = 0 and

E{v*(n)} = 0.001.

5.1. Stationary case

The estimation target system is given by the all-zero model

Ho(z) = 0.674(14+0.8277 +0.62* +0.4:7°4+0.2:7%) (36)

where the scale factor 0.674 in Ho(z) makes the input power
and the output power equal. Therefore, the SNR of the
training output d(n) is 30 dB.

Fig. 2 shows the simulation results, where “LMS-1” de-
note the LMS algorithm with ¢ = 0.001 and “LMS-2” de-
note the LMS algorithm with p = 0.01. The averaged data
was not used so that the fluctuations of the coefficient esti-
mates can be observed, and the simulation data are reduced
by a factor of 100 through subsampling for simpler plots.

As we can see, the CP-LMS algorithm achieves the best
performance by converging to the smallest norm squared es-
timation error in the shortest time. The convergence speed
is about 3 times faster than the slowest one, and the esti-
mation accuracy is about 10 dB better than the worst one.



5.2.

The time-varying estimation target system is given by the
all-zero model

Non-stationary case

Hi(z) = 0.674(14+0.8277 +0.62 " +0.4:7°40.2:7%) (37)
for the interval 0 < n < 5,000 and
Ha(z) = 0.674(1—0.8277+0.62"" —0.4:7°40.2:7%) (38)

for the interval 5,000 < n < 10,000. The scale factor 0.674
in Hy(z) and H2(z) makes the input power and the output
power equal. Therefore, the SNR of the training output
d(n) is 30 dB.

Fig. 3 clearly shows that the CP-LMS algorithm has the
faster tracking capability and the smaller steady-state error
than the other algorithms.

6. CONCLUSION

By employing two adaptive filters with different update step
sizes operating in parallel and complementing each other,
the CP-LMS algorithm achieves both the fast convergence (
tracking ) speed and the small steady-state error for adap-
tive filtering.

Also, compared with the conventional variable step size
algorithms for the adaptive FIR filtering, the CP-LMS is
more versatile, more robust and simpler to use in practice.
Although the new algorithm requires twice as many com-
putations than the single fixed step size algorithm, the per-
formance gains outweigh the extra cost.
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Figure 1. The CP-LMS algorithm block diagram
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