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ABSTRACT

This paper presents a new algorithm that can solve the
problem of selecting appropriate update step size in the
LMS algorithm. The proposed algorithm, called a Comple-
mentary Pair LMS (CP-LMS) algorithm, consists of two
adaptive �lters with di�erent update step sizes operating
in parallel, one �lter re-initializing the other with the bet-
ter coe�cient estimates whenever possible. This new algo-
rithm provides the faster convergence speed and the smaller
steady-state error than those of a single �lter with a �xed
or variable step size.

1. INTRODUCTION

In adaptive �ltering, the LMS algorithm is very popular for
its simplicity and predictable behavior, but the compromise
must be made between the convergence ( tracking ) speed
and the steady-state error. This is because the LMS algo-
rithm updates the adaptive �lter coe�cients with a term
whose magnitude is proportional to the so-called step size
�. To obtain the fast convergence speed, � has to be rela-
tively large but using a large � produces a large steady-state
error. To obtain the small steady-state error, � has to be
relatively small but using a small � makes the convergence
very slow [1].

To solve this problem, many variable step size algorithms
[2] [3] [4] [5] [6] that try to achieve both the fast convergence
speed and the small steady-state error have been developed.
However, the performances of these algorithms are highly
dependent on the algorithm parameters which are selected
without speci�c rules.

To provide strictly controlled performance and to elim-
inate the con
ict between the accuracy and the speed as-
pect, we introduce a new adaptive �ltering algorithm called
a CP-LMS ( Complementary Pair LMS ) algorithm. The
new algorithm uses two adaptive �lters operating in parallel
with di�erent step sizes. The estimation errors of two �lters
are compared, and the coe�cients of one �lter is used for
re-initializing the other �lter to speed up the convergence (
tracking ) speed.

2. ADAPTIVE FIR FILTERING

Let x(n) be the input for a unknown system H, which is
modeled by the �lter coe�cient bk, 0 � k � K. Then the

output y(n) of H is given by

y(n) =

KX
k=0

bkx(n� k) = x
T (n)b (1)

where

x
T (n) = [ x(n) x(n� 1) : : : x(n�K) ]

b
T = [ b0 b1 : : : bK ] :

Usually y(n) is corrupted by zero-mean additive noise
v(n), so the observed output of H is given by

d(n) = y(n) + v(n) : (2)

In the system identi�cation con�guration [1], the input
to the adaptive FIR �lter is x(n) and the �lter output z(n)
is

z(n) =

KX
k=0

b̂k(n)x(n� k) = x
T (n)b̂(n) (3)

where

x
T (n) = [ x(n) x(n� 1) : : : x(n�K) ]

b̂
T (n) = [ b̂0(n) b̂1(n) : : : b̂K(n) ] :

The adaptive �lter coe�cients b̂k(n), 0 � k � K are
estimated such that the di�erence between d(n) and z(n),
de�ned as the estimation error

e(n) = d(n)� z(n) ; (4)

approaches zero.
The most popular adaptive FIR �ltering algorithm is the

LMS ( Least Mean Square ) algorithm [1], which uses the
coe�cient update equation :

b̂(n+ 1) = b̂(n) + �e(n)x(n) : (5)

3. COMPLEMENTARY PAIR LMS

A single adaptive �lter with a �xed update step size �

poses the following problem. To obtain the fast conver-
gence speed, � has to be relatively large but using a large
� produces a large steady-state error. To obtain the small
steady-state error, � has to be relatively small but using
a small � makes the convergence very slow. To solve this



problem, we employ two adaptive �lters with di�erent up-
date step sizes operating in parallel, complementing each
other.
Fig. 1 shows the block diagram of the CP-LMS algo-

rithm. One �lter which has the larger step size �s for the
fast convergence speed is called the speed mode �lter, whose
coe�cients are updated by

b̂s(n+ 1) = b̂s(n) + �ses(n)x(n) (6)

where
es(n) = d(n)� x

T (n)b̂s(n) : (7)

The other �lter which has the smaller step size �a for the
small steady-state error is called the accuracy mode �lter,
whose coe�cients are updated by

b̂a(n+ 1) = b̂a(n) + �aea(n)x(n) (8)

where
ea(n) = d(n)� x

T (n)b̂a(n) : (9)

The two �lters operate in parallel, and es(n) and ea(n) are
supplied to the controller that re-initializes the accuracy
mode �lter.
This re-initialization controller replaces b̂a(n) with b̂s(n)

for every M -th coe�cient update, if the local average of
e2s(n) is less than the local average of e

2
a(n) for J consecutive

comparisons with interval length M . This re-initialization
of the accuracy mode �lter can be mathematically expressed
as

b̂a(n+ 1) =

8>>>>><
>>>>>:

b̂s(n+ 1)
if n(mod M) = 0 andQJ

j=1
Q(n� jM) = 1

b̂a(n) + �aea(n)x(n)
otherwise

(10)

where M is the comparison interval, J is the number of
comparisons, and Q(m) is a two-valued function de�ned as

Q(m) =

8<
:

1 if
Pm+M

i=m
e2s(i) <

Pm+M

i=m
e2a(i)

0 otherwise .

(11)

Since Q(m) is evaluated only once in every M updates and
the past values of Q(m) can be saved, the total computa-
tions needed for the CP-LMS is 4K+4 multiplications and
4K + 2 additions per update.
The size of M should be su�ciently large, M � 1, so

that the statistical average of e2s(n) and e2a(n) can be ob-
tained. Also, M should be much smaller than N; M � N ,
where N is the length of the training input x(n), so that a
su�cient number of re-initialization is possible. Therefore,
the comparison period M must satisfy the inequality

1�M � N : (12)

A simple choice for M is M =
p
N which satis�es (12) and

shows good performance in simulations.
The number J should be chosen according to the training

input length and the noise levels. The total comparison

length JM should be much smaller than N; JM � N ,
so that a prompt re-initialization is ensured. If we have
chosen M =

p
N, then this leads to the condition J �M .

For low SNR, we must have J � 1, so that the mistaken re-
initialization, due to the noise signal, is avoided. Therefore,
under low SNR, the number of comparison J must satisfy
inequality

1� J �M : (13)

For high SNR, we can choose J close to 1 for more fre-
quent re-initialization, since the probability of mistaken re-
initialization due to the noise signal would be small. This
means J only have to satisfy

1 < J �M : (14)

The simulations show that, for SNR of 30 dB, the value
J = 3 is found to be su�cient.
The re-initialization of the accuracy mode �lter occurs

when b̂s(n) approaches faster to the true value b than b̂a(n)
due to the larger step size �s. Since the accuracy mode �lter
is re-initialized with better coe�cient estimates whenever
possible, the convergence can be reached in shorter time
with the desired accuracy set by the smaller update step
size �a.
The step size �s could be large as long as stable conver-

gence is maintained. The upper bound of �s is given by a
well-known inequality [7]

�s <
1

trEfx(n)xT (n)g =
1

KEfx2(n)g (15)

where K is the vector length of x(n).
The step size �a could be small as long as convergence

can be reached within the given training signal length N .
Since the total absolute sum of the expected update terms
must satisfy

N�1X
n=0

jEf�aea(n)x(n� k)gj � jbk j ; (16)

we can write

N

�
�a
p
2Efd2(n)gEfx2(n� k)g

�
� jbk j (17)

where we have used a cross-correlation property [8]

jE fea(n)x(n� k)gj �
p
E fe2a(n)gE fx2(n� k)g (18)

and an assumption E
�
e2a(n)

	
� 2E

�
d2(n)

	
. If jbk j � 1,

then the su�cient condition for �a can be derived from (17),
which is

�a >
1

N
p
2Efd2(n)gEfx2(n)g

: (19)

Combining (15) and (17), we get

1

N
p
2�d�x

< �a < �s <
1

K�2x
(20)

where �2d = Efd2(n)g and �2x = Efx2(n)g. However, �a
must be much smaller than �s so that the accuracy mode



�lter have substantially smaller steady-state error than the
speed mode �lter, but using step sizes near the lower and
the upper bound tend to produce unsatisfactory results.
Therefore, more realistic condition for �a and �s is

1

N
p
2�d�x

� �a � �s �
1

K�2x
: (21)

4. ALGORITHM BEHAVIOR

To examine the behavior of the CP-LMS algorithm, we ob-
tain the estimation error vectors

ps(n) = b̂s(n)� b (22)

pa(n) = b̂a(n)� b (23)

from b̂s(n) and b̂a(n). Also, we assume that the training
input signal and the coe�cient estimates are uncorrelated.
Combining (1), (2), (6), (7), and (22), we can construct

the recursive equation of ps(n) such that

ps(n+ 1) = (I� �sx(n)x
T (n))ps(n) + �sx(n)v(n) : (24)

Thus, the mean behavior of ps(n) is described by

Efps(n+ 1)g = (I� �sR)Efps(n)g ; (25)

where R = Efx(n)xT (n)g.
The mean behavior of pa(n) is more complicated due to

the re-initializations, and is described by

Efpa(n + 1)g =

8>>>>><
>>>>>:

Efps(n+ 1)g
if n(mod M) = 0 andQJ

j=1
�Q(n� jM) = 1

(I� �aR)Efpa(n)g
otherwise

(26)

where

�Q(m) =

8<
:

1 if
Pm+M

i=m
Efe2s(i)� e2a(i)g < 0

0 otherwise .

(27)

To get some meaningful insight of the mean-square be-
havior, we assume x(n) is a white gaussian signal, so that
R = �2xI. Then, using (24), we can calculate EfpTs (n +
1)ps(n + 1)g, which reduces to

Efkps(n+ 1)k2g = �sEfkps(n)k2g+K�
2
s�

2
x�

2
v (28)

where kps(n)k2 = pTs (n)ps(n); �
2
v = Efv2(n)g, and �s =

1� 2�s�
2
x + (K + 2)�2s�

4
x.

Incorporating the re-initialization operations, the mean-
square behavior of pa(n) is described by

Efkpa(n + 1)k2g =

8>>>>><
>>>>>:

Efkps(n+ 1)k2g
if n(mod M) = 0 andQJ

j=1
�Q(n� jM) = 1

�aEfkpa(n)k2g+K�2a�
2
x�

2
v

otherwise
(29)

where �a = 1� 2�a�
2
x + (K + 2)�2a�

4
x.

From (25), (26), (28), and (29), we can extract the steady
state properties of the CP-LMS algorithm, which are

Efps(1)g = 0 (30)

Efpa(1)g = 0 (31)

Efkps(1)k2g =
K�s�

2
v

2� (K + 2)�s�2x
(32)

Efkpa(1)k2g =
K�a�

2
v

2� (K + 2)�a�2x
: (33)

5. SIMULATIONS

The computer simulations are carried out to investigate
the performance gains obtained by using the CP-LMS algo-
rithm. The performance is measured with the norm squared
estimation error

kpa(n)k2 = kb� b̂a(n)k2 : (34)

The compared algorithms are the LMS algorithm with
� = 0:001, the LMS algorithm with � = 0:01, the CP-LMS
algorithm with �a = 0:001; �s = 0:01;M = 100; J = 3, and
the variable step size (VSS) algorithm [4] which employs a
variable step size �(n) de�ned as

�(n+ 1) =

(
�max if �(n) > �max
�min if �(n) < �min
��(n) + 
e2(n) otherwise

(35)

where �max = 0:01; �min = 0:001; � = 0:97, 
 = 0:00048,
and e(n) is the estimation error [4].

The training input x(n) of length N = 10; 000 is a white
gaussian pseudo-random sequence with Efx(n)g = 0 and
Efx2(n)g = 1. The additive noise v(n) is also a white
gaussian pseudo-random sequence with Efv(n)g = 0 and
Efv2(n)g = 0:001.

5.1. Stationary case

The estimation target system is given by the all-zero model

H0(z) = 0:674(1+0:8z
�2

+0:6z
�4

+0:4z
�6

+0:2z
�8
) (36)

where the scale factor 0.674 in H0(z) makes the input power
and the output power equal. Therefore, the SNR of the
training output d(n) is 30 dB.

Fig. 2 shows the simulation results, where \LMS-1" de-
note the LMS algorithm with � = 0:001 and \LMS-2" de-
note the LMS algorithm with � = 0:01. The averaged data
was not used so that the 
uctuations of the coe�cient esti-
mates can be observed, and the simulation data are reduced
by a factor of 100 through subsampling for simpler plots.

As we can see, the CP-LMS algorithm achieves the best
performance by converging to the smallest norm squared es-
timation error in the shortest time. The convergence speed
is about 3 times faster than the slowest one, and the esti-
mation accuracy is about 10 dB better than the worst one.



5.2. Non-stationary case

The time-varying estimation target system is given by the
all-zero model

H1(z) = 0:674(1+0:8z
�2

+0:6z
�4

+0:4z
�6

+0:2z
�8
) (37)

for the interval 0 � n < 5; 000 and

H2(z) = 0:674(1�0:8z
�2

+0:6z
�4�0:4z

�6
+0:2z

�8
) (38)

for the interval 5; 000 � n < 10; 000. The scale factor 0.674
in H1(z) and H2(z) makes the input power and the output
power equal. Therefore, the SNR of the training output
d(n) is 30 dB.
Fig. 3 clearly shows that the CP-LMS algorithm has the

faster tracking capability and the smaller steady-state error
than the other algorithms.

6. CONCLUSION

By employing two adaptive �lters with di�erent update step
sizes operating in parallel and complementing each other,
the CP-LMS algorithm achieves both the fast convergence (
tracking ) speed and the small steady-state error for adap-
tive �ltering.
Also, compared with the conventional variable step size

algorithms for the adaptive FIR �ltering, the CP-LMS is
more versatile, more robust and simpler to use in practice.
Although the new algorithm requires twice as many com-
putations than the single �xed step size algorithm, the per-
formance gains outweigh the extra cost.
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Figure 1. The CP-LMS algorithm block diagram
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Figure 3. Norm squared estimation error plot


