
USING A LATTICE ALGORITHM TO ESTIMATE THE KALMAN GAIN VECTOR

IN FAST NEWTON-TYPE ADAPTIVE FILTERING

Marc Moonen1 Ian Proudler2

1 ESAT - Katholieke Universiteit Leuven, Kardinaal Mercierlaan 94, 3001 Heverlee - Belgium
2 DRA, Room E506, St Andrews Road, Malvern, Worcs., WR14 3PS, UK

ABSTRACT

In this paper we consider a recursive least squares
(RLS) adaptive �ltering problem where the input sig-
nal can be modelled as the output of a low order au-
toregressive (AR) process. We will show how a good
estimate of the Kalman gain vector can be obtained
using a small least squares lattice (LSL) �lter. This
estimate can then be used in the normal way to de-
termine the optimum �lter coe�cients. The resulting
adaptive �ltering algorithm is similar in concept to the
Fast Newton algorithm. The main di�erence is the use
of the LSL instead of a low order covariance domain
fast RLS algorithm. The potential advantage of this
new algorithm is that, unlike a covariance domain al-
gorithm, a LSL can be implemented in a numerically
stable form.

1. INTRODUCTION

It is well known [1] that linear prediction of the input
(regression) signal is a fundamental part of any fast
RLS algorithm. Mathematically, one is led to a lin-
ear prediction problem of the same order as the origi-
nal adaptive �ltering one. Physically, however, there is
no reason why the orders of the two problems should
be so coupled. The Fast Newton algorithm [3] decou-

ples these two problems and as a result has the con-
vergence speed of RLS and yet nearly the same com-
putational complexity as the LMS algorithm. The al-
gorithm has two potential numerical `weak spots': the
weight-update recursion (see equation (1)) and the (low
order) covariance domain RLS algorithm used to solve
the linear prediction problem. In this paper we will
show how the latter algorithm can be replaced by a
(stable) least squares lattice (LSL).

We take as our starting point, the so-called `inverse
updating' RLS algorithm [1, 4] as speci�ed in section 2.
In section 3, the principle of the so-called Fast Newton
approach [3] is explained by means of graphical repre-
sentations (signal 
ow graphs). In section 4, it is shown
how a LSL based Fast Newton-type algorithm may be

derived. Preliminary simulation results are given in
section 5.

2. INVERSE UPDATING RLS

Consider the basic RLS weight-update recursion:

w(k) = w(k � 1) + �
p
(k) � e(k)

e(k) = d(k)� wT (k � 1) � u
p
(k)

(1)

where the p-dimensional vector w(k) consists of the
adaptive �ltering weights at time k, �

p
(k) is the

Kalman gain vector, d(k) is the desired signal, and
u
p
(k) is the p-dimensional regression vector

u
p
(k) =

�
u(k) u(k � 1) : : : u(k � p+ 1)

�T
:

It is well know [1] that the Kalman gain vector is given
by

�
p
(k) = R�1

p
(k) � R�T

p
(k) � u

p
(k) (2)

where Rp(k) is the (upper triangular) Cholesky factor

of the covariance matrix Mp(k) =
P

k

i=1
u
p
(i)uT

p
(i).

The inverse updating RLS algorithm is based on stor-
ing and updating w(k) together with R�T

p
(k) (lower

triangular). A signal 
ow graph (SFG) is given in Fig-
ure 1 (for a 4th order problem). We assume that the
reader is familiar with this algorithm, and give only a
brief explanation. Details may be found in [1, 4, 2].

The basic building blocks which will be used in the
SFGs are shown at the right. White hexagons represent
2� 2 orthogonal (Givens) transformations of the form

�
a0

b0

�
=

�
cos� sin�

� sin� cos�

� �
a

b

�

where the rotation angle � is one of the inputs. The
hexagons in the left-most column of Figure 1 portray
the computation of a rotation angle �, such that one
of the outputs is forced to zero and the other one is
positive. Black squares represent memory cells (delay
elements), possibly combined with exponential weight-
ing with a weight factor �.



a+b.c

c

ϕϕ

b

∆ ∆ ∆

b

∆ ∆ ∆

∆

∆

a

a

b

a-b.c a

c

c b

b b’

a’
0

0

0

0

w4

0

w3w1

0

0

0

0

δ .δ .δ .δ .δ-k1 -k2 -k3 -k4

e

-e/

w2
:

δ

multiply-subtract cell

rotation cell
01

0

0

1/λ

multiply-add cell

C00

C10

C20

C30

C11

C21

C31

C22

C32 C33

u(k)

d(k)

Figure 1. Inverse updating RLS algorithm

The weight-update recursion, formula (1), is per-
formed in the bottom row. The residual e(k) is accu-
mulated from right to left. The Kalman gain vector is
produced by the triangular part, up to a scaling ��, to-
gether with � itself (available at the left, as indicated).
The updating of R�T

p
(k � 1) is done by means of or-

thogonal transformations, de�ned at the left-hand side
of the array. The vector �R�T

p
(k� 1) �u

p
(k) is needed

to compute the rotation angles, and this matrix-vector
product is also accumulated from right to left. Further
SFG details may be found in [2, 5].

3. FAST NEWTON TYPE ALGORITHMS

It is well known that

R�T

p
(k) =

2
664

c00(k) 0 : : : : : : 0
c10(k) c11(k) 0 : : : 0
: : : : : : : : : : : : : : :

c~p0(k) c~p1(k) : : : : : : c~p~p(k)

3
775 (3)

where c
i
(k) = [ci0(k) : : : cii(k)] is the (energy nor-

malised) i-th order backward prediction-error �lter co-
e�cient vector and ~p = p� 1.
Now if the signal u(k) is modelled as being generated

by an AR process of order m < p, we have [3] that (for
i > m) ci;0(k) = 0 and (for i > m and i � j > 0)
ci;j(k) = ci�1;j�1(k � 1). Hence it is possible, knowing
only the solution to the m-th order backward predic-
tion problem, to construct the full p-th order Cholesky
factor Rp by extending Rm. This is illustrated in Fig-
ure 2 (for a 9th order problem, with m = 2). In the
triangular matrix, the entries below the m-th subdiag-
onal are set equal to zero, and the non-zero diagonals
are derived from simple delay lines. This is possible
since these coe�cients are known given c

m
and hence

∆ ∆ ∆

∆∆

∆

∆∆∆

∆ ∆

∆

∆∆

∆

∆

∆

∆

∆

∆

∆

∆∆∆

∆∆

∆∆∆∆

∆∆ ∆∆∆∆∆∆

01

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

.δ .δ .δ .δ-k1 -k2 -k3 -k4

-e/
:

δ

.δ .δ .δ.δ .δ-k5 -k6 -k8 -k9-k7

0

0 0

0 0 0

0 0

0

0 0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

d(k)

C10

C00

C11

C21 C22C20

u(k)

w1 w2 w3 w4 w5 w6 w7 w9w8δ

e

r

s

Figure 2. Inverse updating RLS with AR input

need not be stored and updated. The `backwards only'
Fast Newton algorithm [3] results when the time-shift
structure now present in R�T

p
is used to construct an

O(p) algorithm for generating the p-th order Kalman
gain vector �

p
from the m-th order one �

m
. The main

ideas are illustrated in Figures 3-4-5.

First, it is readily seen that, because of the time-shift
structure (delay lines) in R�T

p
(k�1) as well as in u

p
(k),

the (lower part of the) vector �R�T

p
(k� 1) � u

p
(k), i.e.

the computed matrix-vector product, has a shift struc-
ture, too. In Figure 2, it is readily veri�ed that, e.g.,
s(k) = r(k�1) (left-hand column). This is exploited in
Figure 3, where the lower part of �R�T

p
(k�1) �u

p
(k),

starting from its (m+2)-nd component, is derived from
the computed (m+1)-st component, by means of a de-
lay line. The end result is that the O(p2) matrix-vector
product is now reduced to a (much cheaper) O(m2)

matrix-vector product.

In a similar fashion, one can exploit the available
shift structure to reduce the complexity of the Kalman
gain vector computation. Figure 3 is �rst transformed
into Figure 4. In Figure 3, the Kalman gain vector
�p = � (resp. �m+1 = ��) is produced up to a scaling
�� (resp. ���), together with the scaling itself (up to
a sign) using orthogonal transformations. Given that
no coe�cient update operation is needed, it is easy to
show that multiply-add operations can be used for the
update instead provided the scaling in changed from��

(resp. ���) to ��2 (resp. ���2), as indicated. In Figure



∆

∆

∆

∆ ∆ ∆

∆

∆ ∆

∆

∆ ∆

∆

∆

∆ ∆ ∆

∆ ∆ ∆

∆

∆

∆

∆

∆

∆

∆∆

∆

∆

∆

∆

∆

∆∆ ∆∆∆∆∆

∆∆

∆

01

0

0

0

0

0

0

0

0

0

δ .δ .δ .δ .δ-k1 -k2 -k3 -k4

-e/
:

δ

.δ .δ .δ.δ .δ-k5 -k6 -k8 -k9-k7

0

0 0

0 0 0

0 0

0

0 0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

∆

0

0

d(k)

u(k)

C00

C10 C11

C21 C22C20

w1 w2 w3 w4 w5 w6 w7 w8e w9

Figure 3. Derivation Fast Newton algorithm (1)

4, it is then readily veri�ed that, e.g., v(k) = u(k � 1).
This is exploited in Figure 5, where the middlemost
part of the Kalman gain vector computation is replaced
by a delay line. Figure 5 is essentially a representa-
tion of a square-root covariance domain, backwards-
only Fast Newton algorithm, with O(p+m2) complex-
ity. In [3], a `fast' (FTF-type) algorithm is substituted
for the O(m2) part, to further reduce complexity.

4. LS LATTICE BASED FAST NEWTON

The (m+ 1)-dimensional triangular part at the top in
Figure 5 implements an m-th order backward predic-
tion �lter (as indicated), producing an (energy normal-
ized) backward prediction error. This residual is then
fed into the delay line at the left. It is also seen that
the shaded multiply-add chain in the 4th column im-

plements a �lter with coe�cients which are -up to a
time delay- equal to the backward prediction �lter co-
e�cients, but in reverse order. Reversing the order
of the coe�cients is known to map the backward pre-
diction �lter into the corresponding forward prediction
�lter (upon convergence) [1].
A least squares lattice (LSL) is known to produce

forward as well as backward residuals, albeit without
explicitly computing the �lter coe�cients [1]. The mid-
dlemost part of the Kalman Gain vector may therefore
be computed using the LSLs as indicated in Figure

6 : First, a LSL is substituted for the topmost (m+1-
dimensional) triangular part of Figure 5, which indeed
produces the same backward residual (together with
a forward residual, which is ignored). The lattice �l-

∆

∆

∆∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

:
-e/δ

∆ ∆

∆

∆

∆

∆

∆

∆

∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆

∆

∆

∆

∆

∆

∆ ∆∆∆∆∆

.δ .δ .δ .δ-k1 -k2 -k3 -k4

e

.δ .δ .δ.δ .δ-k5 -k6 -k8 -k9-k7

0

0

0

0

∆

0

2 2 22 2

2

2 2 2 2 2

01

0

0

0

0

0

0

0

0

0
−δ.κ1 −δ.κ2 −δ.κ3δ

δ2

w1 w2 w3 w4 w5 w6 w7 w8 w9
δ

d(k)

C00

C10 C11

C21 C22C20

u(k)

u

v

Figure 4. Derivation Fast Newton algorithm (2)

ter coe�cients are then copied into a second lattice
�lter, which is fed with the m-th order backward resid-
uals, and which produces (at the `forward residual out-
put', cfr. reversed coe�cients) the signal needed for
the Kalman gain vector computation. The quantity �

turns out to be a conversion parameter between apriori
and aposteriori values and is not needed if aposteriori
residuals are avialable from the LSLs.

The LSL-based scheme of Figure 6 is an approxi-

mate scheme, not only because it is based on the Fast
Newton approximation, but in addition because of the
following :

� The `original' forward and backward prediction �l-
ters (shaded in Figure 5) have the same set of coe�-
cients only up to time delays and provided the LSL has
converged. The LSL-scheme therefore produces accept-
able approximations only in the slowly time-varying

case (approximately time-invariant in an interval of
length O(m)) after the LSL is close to convergence.

� An estimate of the middlemost part of the Kalman
gain vector is produced. However, the missing parts are
not required if the adaptive �ltering problem is suitably
re-formulated such that the corresponding weights are
(approximately) zero and thus need not be calculated.
This can be achieved by embedding the p-th order �l-
tering problem into a larger p + 2m + 1 problem, of
which the �rst m+1 and last m coe�cients will be ig-
nored. Figure 6 shows a 4th order problem. Note that
the top-left input signal then has to be u(k +m + 1)
instead of u(k). In other words, the algorithm has a
latency of m+ 1 time samples.



∆∆

∆

∆ ∆

∆

∆

∆

∆ ∆ ∆

∆

∆

∆

∆

∆

∆

∆ ∆

∆

∆

∆ ∆∆

∆

∆ ∆ ∆ ∆ ∆

:
-e/δ

∆

∆

∆ ∆

∆

∆

∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆

∆

∆

∆

∆

∆

.δ .δ .δ.δ-k6 -k8 -k9

∆

2

∆

.δ .δ .δ-k2 -k3 -k5
2 2 22

∆∆

∆∆

∆

∆

∆

-k7
2.δ 2 22

∆

.δ-k1 -k4

∆

∆

0

0

∆

01

0

0

0

0

0

0

0

0

0
−δ.κ1 −δ.κ2 −δ.κ3δ

δ2

e

2

d(k)

01

0

0

0

0

0

0

0

0

C00

C10 C11

C21 C22C20

u(k)

residual
backward

backward prediction filter

forward prediction filter

C22

C21

C20

w9w8w7w6w5w4w3w2w1

Figure 5. Fast Newton-type algorithm

5. SIMULATIONS

Figure 7 shows the convergence rate of the LSL Fast
Newton-type adaptive �ltering algorithm. For compar-
ison, the performance of the `forward-backward' Fast
Netwon algorithm [3], the RLS and the normalised
LMS algorithms are also shown. The scenario is that
of a system identi�cation problem. The target system
is 20th order FIR �lter (p=20) with an input signal
derived from a 6th order AR process. There is addi-
tive noise of amplitude 10�7. The Fast Newton-type
algorithms both use the correct AR order (m=6) and a
forget factor of 0.983. The data matrix had a condition
number of 55. In order to avoid initialisation problems,
the algorithms were run until they converged and then
the FIR �lter was changed (at t= 1200). The plot in
�gure 7 shows the various apriori estimation errors av-
eraged over 5 Monte Carlo runs. It is clear that both
Fast Newton-type algorithms perform as well as the
exact RLS algorithm. The LMS algorithm is slow to
converge because of the high condition number.

6. ACKNOWLEDGEMENTS

Marc Moonen is a Research Associate with the F.W.O.-

Vlaanderen (Flemish Fund for Science and Research). His re-

search was carried out in the frame of the Concerted Research

Action MIPS (`Model-based Information Processing Systems')

of the Flemish Government and the IT-project ITA/GBO/T23

of the Flemish I.W.T. (`Integrating Signal Processing Systems').

This work was undertaken whilst Ian Proudler was a Visiting

Fellow (grant no. F/96/41) at K.U. Leuven.

copy
coefficients

∆ ∆∆

∆

∆∆

∆

∆

∆ ∆∆ ∆

∆

forward

residual
backward

∆ ∆

∆

∆

∆

∆

residual

∆
u(k+3) u(k)

LSL

.δ .δ.δ .δ2 2 2 2

w4 w5 w6 w7 d(k)e

~k4 ~k5 ~k6 ~k7

LSL

residual
forward

residual
backward

µ=1

Figure 6. LSL-based Fast Newton algorithm

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

LMS

FB−FN

LSL−FN

RLS

Figure 7. Convergence rate

REFERENCES

[1] S. Haykin, Adaptive Filter Theory, 2nd Edition,
Prentice Hall, Englewood Cli�s, New Jersey, 1991.

[2] M. Moonen, J.G McWhirter, A systolic array for

recursive least squares by inverse updating. Elec-
tronics Letters, Vol. 29 (1993), No. 13, pp 1217-
1218.

[3] G.V. Moustakides and S. Theodoridis,\Fast New-
ton Transversal Filters - A New Class of Adaptive
Estimation Algorithms", IEEE Trans. SP-39(6),
p.2184-2193.

[4] C.T. Pan, R.J. Plemmons, Least squares modi�ca-

tions with inverse factorization: parallel implica-

tions. J. Computational and Applied Mathemat-
ics, Vol. 27, No. 1-2, 1989, pp. 109-127.

[5] I.K. Proudler, J.G. McWhirter, M. Moonen,
G. Hekstra, Formal derivation of a systolic ar-

ray for recursive least squares estimation. IEEE
Trans. CAS II, Vol. 43, Nr. 3, March 1996, pp
247-254.


