
where 1

Efjai j
2g2

and 1

Efjai j
4g�3Efjai j

2g2
are a priori known

input dependent constants which we will call � and � re-
spectively. We now di�erentiate the above cost function
with respect to �w where �w = [wN ; � � � ; w1; w�1; � � � ; w�N ]

T .
The \barred" w is used because the middle component of
w has to be �xed at 1 to avoid s = 0. This gives the newly
proposed algorithm

�w(i+ 1) = �w(i)� �
�
(�+ 3�)Efjzij

2g � �jzij
2
�
�

�(z�i �yi + zi�y
�
i ) (15)

where �yi = [yi+N ; � � � ; yi+1; yi�1; � � � ; yi�N ]T , � denotes
complex conjugation and 2N is the length of the equal-
izer adaptive parameter vector �w. In the actual imple-
mentation of this algorithm the expectation Efjzij2g is ap-
proximated on-line in the following manner: Efjzi+1j2g =
Efjzij2g + 1

i
(jzij2 �Efjzij2g).

Other cost functions from the above class can be imple-
mented in the similar manner. Figure 6 shows how �ve of
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Figure 6. Comparison of �ve algorithms out of the

proposed class of algorithms. Input is 4-level QAM,

Channel impulse response is [.04 -.05 .07 -.21 -.5 .72

.36 .21 .03 .07], with 13 adaptive weights and no

noise.

the newly presented algorithms compare with each other in
the areas of convergence speed and minimum achieved ISI.
From the �gure it can be easily seen that the fastest con-
vergence as well as the lowest residual ISI is achieved by
the (

P
i
s2i )

2 �
P

i
s4i cost function's algorithm. It is also

the least computationally complex algorithm of the above
proposed class. We now compare the (

P
i
s2i )

2�
P

i
s4i cost

function's algorithm to the existing ones through simula-
tions. From Figure 7 we can see that the performance of
the new algorithm is superior to [9] and similar to Godard's
without the local minima.
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only, we will not need the j � j. The input-output relation is
zi =

P
j
ai�jsj Therefore, by standard manupulation and

envoking the zero mean, i.i.d. assumption of the input ai
(note that if ai's probability density function is symmetric
about the origin (this is almost always the case) all the odd
moments of a i.e. Ea3, Ea5 etc. are equal to zero) we get

Efjzij
2g =

X

j1

X

j2

Efai�j1a
�
i�j2gsj1sj2

= Efjaij
2g
X

j

s
2
j (12)

Similarly,

Efjzij
4g =

X

j1

X

j2

X

j3

X

j4

Efai�j1a
�
i�j2

ai�j3a
�
i�j4

g �

�sj1sj2sj3sj4

= Efjaij
4g
X

j

s
4
j

+3Efjaij
2g2[(

X

j

s
2
j)

2 �
X

j

s
4
j ] (13)

Rearranging and solving (2) and (1) for
P

j
s4j and

P
j
s2j

respectively we get our cost function as a function of z's

(
X

j

s
2
j)

2 �
X

j

s
4
j = [

1

Efjaijg2
Efjzij

2g]2

�
Efjzij

4g � 3Efjzij
2g2

Efjaij4g � 3Efjaij2g2
(14)



intersymbol interference ISI in terms of the joint response s

as ISI =

P
i
jsij

2�jsj2max

jsj2max

[8].

3. A REFINED CLASS OF COST FUNCTIONS

It was shown in [1] that by minimizing the distance between
any two norms of s where the p-norm of s is de�ned as

f
P

i
jsij

pg
�

p , i.e., f
P

i
jsij

pg
�

p �f
P

i
jsij

qg
�

q where q is any
number > p and � is any integer > 0, we will arrive at the
equalization condition. We examined

P
j
jsjj�maxj jsjj in

[1] and showed that it is convex in s. However, this kind of
convexity is only sectional (see Fig. 2), and hence may not
be transformed into convexity in w. In this presentation
we re�ne our previous work [1]. The newly re�ned class

presented here is f
P

i
jsij

pg
�

p � f
P

i
jsij

qg
�

q where p and q

are even integers and � is the least common multiple of p
and q. Here are some examples:

f
X

j

jsjj
2g2 �

X

j

jsjj
4 (3)

f
X

j

jsjj
2g3 �

X

j

jsjj
6 (4)

f
X

j

jsjj
4g2 �

X

j

jsjj
8 (5)

Note that due to the above mentioned property of norms
there exist many other possibilities of arriving at the equal-
ization condition, for example

fix max
s

jskj; minimize
X

j

jsjj
p
; p <1 (6)

minimize & then fix
X

j

jsjj
2
; maximize

X

j

jsjj
p
; p > 2 (7)

fix
X

j

jsjj; maximize
X

j

jsjj
p
; p > 1 (8)

But it is the class represented by (3) - (5) that exhibits
unimodality and thus is the focus of this paper.

We now show that (
P

j
s2j)

p �
P

j
s
2p
j are unimodal for

each delay k or unimodal in a wide-sense in s. To see where
the extrema are located the partial derivative of (

P
j
s2j)

p�P
j
s
2p
j with respect to si is taken and set equal to 0.

@[(
P

j
s2j)

p �
P

j
s
2p
j ]

@si
= 2p(

X

j

s
2
j)
p�1

si � 2ps2p�1i

= [(
X

j

s
2
j)
p�1 � s

2(p�1)

i ]2psi = 0

(9)

Equation (9) has two solutions, one of which corresponds
to s = 0. This solution will not occur because of a �xed
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Figure 2. Plot of the cost functions
P

j
jsjj�max jsjj

(top) and f
P

j
jsjj

2g2�
P

j
jsjj

4 (bottom), in s (s1 and

s2)

equalizer weight. The other solution is the minimum cor-
responding to perfect equalization. This is shown by the
following:

s
2(p�1)

i = (
X

j

s
2
j)
p�1

: (10)

Taking the (p� 1)st root of both sides

s
2
i = (

X

j

s
2
j) (11)

The equation (11) only holds when s has at most one
nonzero element, i.e., is the desired delta function. Thus
(
P

j
s2j )

p �
P

j
s
2p
j are unimodal in s.

The above proven unimodality in s does not imply uni-
modality in w. However, we have plotted the surfaces of
these cost functions for numerous channels and two adap-
tive weights. All plots turn out to be unimodal. This leads
us to believe that the proposed class of cost functions is
unimodal (may not be convex) under mild conditions. Fig-
ures 3 and 4 show various cost functions for various chan-
nels. Clearly, they are all unimodal. Another example of
the contour surfaces of the newly proposed and the Godard
cost functions in two adaptive weights w is shown in Figure
5. From Figure 5 it is clear that Godard's (p=2) algorithm
exibits local minima [10]. These minima will cause insu�-
cient ISI removal if the algorithm is not properly initialized.
Our cost function's surface however, is unimodal.

3.1. Implemention

Since s is not available we need to convert our cost function
from a function of s's to a function of z's. For QAM signals
ai 2 C. This implies that yi and zi are also 2 C while s
2 <. Since s 2 < and we will be using even powers of jsjj
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ABSTRACT

The use of gradient descent recursive algorithms in blind
adaptive equalization requires a cost function with a unique
minimum such that the FIR equalizer setup removes su�-
cient Intersymbol Interference (ISI). A cost function based
on minimizing the di�erence between the second and the
fourth norms of the joint channel-equalizer impulse re-
sponse, each raised to the fourth power i.e., k � k42 � k � k44 is
proposed. An implementable recusive on-line algorithm us-
ing the above cost function is also derived for QAM inputs.
A sizable array of examples shows that the above class is
unimodal in equalizer weights. Extensive simulations show
that the performance of the newly proposed algorithms is
comparable to the CMA algorithms' performance without
the misconvergences.

1. INTRODUCTION

Blind equalization is the on-line recovery of discretely dis-
tributed source signals at the output of a channel using
only prior knowledge of the source signal's alphabet and
statistics. Blind equalization for digital data communica-
tion was �rst introduced by Y. Sato [2] and was generalized
in subsequent works by Godard [3], Treichler [4], Benveniste
et al. [5] [6], and Picci et al. [7]. The above adaptive
algorithms for parameter updating replace the prediction
error in the traditional LMS algorithm with a modi�ed er-
ror signal not involving the reference signal or the \train-
ing signal". These algorithms can be viewed as generalized
\Bussgang" algorithms since upon convergence the equal-
izer output attains the Bussgang statistical property. The
above algorithms are computationally simple and thus easy
to implement. Due to their computational simplicity and
ease of implementation, these algorithms are widely used in
the communication industry. The price of the above sim-
plicity is, however the risk of possible misconvergences. The
misconvergences are caused by lack of unimodality (or con-
vexity) of the algorithm's cost functions [3] [4] [10]. Insu�-
cient removal of Intersymbol Interference (ISI) can occur if
algorithm's initialization results in a convergence to a stable
local minimum.
In this paper a family of cost functions is proposed which

is general and promising. This family consists of a number

�This work is supportedby the O�ce of Naval Research under

Grant N00014-96-1-0241, and by the DOD AASERT program

under Grant N00014-93-1-1032.

of cost functions, many of which exhibit wide-sense uni-
modal performance surfaces.

2. BACKGROUND

channel
h +

a equalizer z

w
s

Q( )

decision
device a

 noise ν 

yynf

Figure 1. Blind equalization model

Figure 1 depicts a typical (baseband) representation of a
time-invariant communication system (assuming operation
in the discrete-time domain) where ai is the digitized input
signal (e.g. �1 � j) and the output signal yi is the result
of convolving ai with the channel impulse response hi, as
shown by

ynf;i =

MX

j=0

hjai�j (1)

where M+1 is the length of the channel (can be �nite or
in�nite) and it is assumed that hj is zero for j < 0 (i.e., the

system is causal). De�ne w
4
= [w�N w�N+1 : : : wN�1 wN ]

T ,
the parameter vector of the equalizer weights of length 2N+
1 with middle weight, w0 set at 1 to prevent the all zero
setup [1]. Denote the impulse response of the total channel-
equalizer combination as si = [si+N ; : : : ; si�(N+M)] whose
elements are given by

si =

NX

j=�N

hi�jwj; (2)

The original channel input is normally restored by sending
the equalizer output zi into a decision device. The decision
device which is typically a quantizer can be simply viewed
as a direct map Q : < ! A where A is the �nite alpha-
bet of which the input data ai consists of. The objective
of the blind equalizer is to adjust w such that the output
sequence â is a delayed version of the input sequence a. In
other words the total channel-equalizer combination s (after
equalization) should be s =

P
j
hk�jŵj = �k where ŵ is the

optimum weight vector and �k is the Kronecker delta and k

is an arbitrary delay. This will be referred to as the equal-
ization condition, which is equivalent to ISI = 0. De�ne


