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ABSTRACT

Set-membership algorithms, including the conventional op-
timal bounding ellipsoid (OBE) algorithm, require a priori
knowledge of exact error bounds which is unknown in most
applications. Conservative (over-estimated) error bounds
used in practice lead to inconsistent parameter estimation.
The novel OBE algorithm with automatic bound estimation
(OBE-ABE) is shown to be consistently convergent without
a priori knowledge of error bounds, even in correlated-error
environments. Computationally e�cient variants of this al-
gorithm for both time-invariant and time-varying systems
are presented. Simulations are performed to demonstrate
the merit of the algorithms.

1. INTRODUCTION

Systems arising in signal processing, system identi�cation,
control, and communication problems can often be modeled
by a linear-in-parameters model

yn = �
T

� xn + vn (1)

in which �� = [a1; � � � ; ap; b0; b1; � � � ; bq ]T is the unknown
\true" parameter vector to be identi�ed; fxng is a sequence
of observable vectors of dimension m = p+q+1; and fvng is
an unobservable model-error sequence. An important spe-
cial case is the auto-regressive with exogenous input (ARX)
model in which xn = [yn�1; � � � ; yn�p; un; � � � ; un�q ]T is the
observed data set composed of samples of the observable
input sequence fung and output sequence fyng. In this pa-
per, the ARX model is assumed and vn is bounded with
unknown least upper bound

p
� or greatest lower bound

�p� for all n. The results of this paper are generalizable
to cases in which yn and vn are vectors [2].
Conventional OBE algorithms [1, 2, 4, 5, 10] are based on

the premise that vn has a pointwise bound that is known a
priori, v2n � n; for all n. With knowledge of energy bounds
v2n� � n, it can be demonstrated that �� 2 
n where 
n

is a hyperellipsoidal set based on the observations at time

n, 
n

def
=
�
�j (� � �n)

T
P�1
n (�� �n) < �n

	
where the ellip-

soid center, �n, and the de�ning matrix Pn are computed
recursively. The ellipsoid center �n is used as an estimator
of the parameters �� at each n. For details see, for exam-
ple, [4, 2, 5]. However, since fvng is unobservable, choosing
a proper bounding sequence fng is critical in practice. If
one or more bounds are underestimated, i.e., v2n < n at
one or more n, then the algorithm is no longer theoretically

valid. Simulations show that underestimation results in an
inconsistent estimator.
A conservative sequence of bounds fng will assure a

meaningful ellipsoid at each n. However, recent work of
Nayeri et al. [7, 10] has demonstrated that the estimator
may be very imprecise, even asymptotically, if the bounds
are too \loose." Formally, it has been shown that even if
a persistence of excitation (PE) condition holds, i.e., even
if there exists an N1 2 N and �1; �2 > 0 such that for all

n, 0 < �1I �
P

n+N1

k=n+1
xkxk

T � �2I < 1, the sequence of

ellipsoids of SM-SA (or any OBE) does not asymptotically
converge to a point if a conservative bound sequence is used.
A formal statement is as follows:

Lemma 1 (Proof: [7, 10]). Assume that PE holds. If there
exists an � > 0 and N 2 N, such that n�vn2 > �; 8 n > N ,
then the sequence of ellipsoids of OBE algorithms does not
asymptotically shrink to a point.

Lemma 1 can be extended to the following by considering
an almost sure (a.s.) !-set in the proof:

Lemma 2 Assume that PE holds. If there exists an � > 0
and N 2 N, such that n�vn

2 > �; 8n > N , almost surely,
then the sequence of ellipsoids of OBE algorithms does not
asymptotically shrink to a point a.s.

Even if the true bound � is known (i.e., let n = �)
and if PE holds, OBE algorithms are only shown in [1]
to asymptotically \converge" to a non-in�nitesimal region
around the true parameter vector. In fact, the consistency
in probability (p. consistency) of the estimator (reduction
of ellipsoids to a point in a deterministic analogy) of OBE
algorithms requires one more (necessary) condition on the
error sequence fvng (Theorem 1 below). To the best of our
knowledge, the �rst proofs of the p. consistency for OBE
algorithms in the i.i.d. case are found in [7, 10], for the exact
parameter bounding (EPA) algorithm in [12], for OBE-ABE
algorithm in i.i.d. case in [6, 9], and for OBE-ABE algorithm
in correlated-error case in this paper.
For analysis, vn, un, and yn are modeled as random vari-

ables de�ned on a probability space (
;F ; P ) where 
 is
a sample space, F a �-�eld, and P a probability mea-

sure. For convenience, de�ne Fn def
= �fvm; um+1;m � ng,

D+
� = [

p
� � �;

p
�] and D�

� = [�p�;�p� + �].

De�nition 1 A random sequence fvng is called uniformly
conditionally tailed (UCT) if given � > 0, there exist a
� > 0 and an in�nite subsequence fmig � N, such that for
all n 2 fmig, P (vn 2 (D+

� [D�

� ) jFn�1) > � a.s.



De�nition 2 A random sequence fvng is called uniformly
tailed (UT) if given � > 0, there exist a � > 0 and an
in�nite subsequence fmig � N, such that for all n 2 fmig,
P (vn 2 (D+

� [D�

� )) > � a.s.

We conclude this section by introducing the following the-
orem giving a necessary condition for the shrinking of the
ellipsoids of OBE algorithms to a point a.s.

Theorem 1 Assume that PE holds. Then, UCT is a nec-
essary condition for the sequence of the ellipsoids of any
OBE algorithm to shrink to a point a.s.

Proof : Suppose that UCT does not hold. That is, there
exist an � > 0 and an N 2 N such that, for all n > N ,
P (vn 2 D+

� jFn�1) = 0 and P (vn 2 D�

� jFn�1) = 0 a.s.
Hence, n � v2n > �; 8 n > N a.s. Thus, by Lemma 2, the
sequence of the ellipsoids does not shrink to a point a.s. 2

2. THE OBE-ABE ALGORITHM

In this section, we introduce the OBE-ABE algorithm
whose estimator is a.s. consistent and/or p. consistent under
various conditions. The error sequence fvng is assumed sta-
tionary for a.s. consistency. Stationarity and the indepen-
dence between fung and fvng are not necessary for p. con-
sistency [6].

Theorem 2 Assume that fvng is independent of fung. If
PE holds, UCT holds, and fvng is mixing, then the estima-
tor of the OBE-ABE algorithm is a.s. consistent.

In the above theorem, mixing of fvng can be relaxed to
asymptotic independence of fvng for p. consistency. Fur-
ther, if fvng or fung or both are continuously-distributed
random sequences, then, the mixing condition can be re-
laxed to an ergodic condition for a.s. consistency. The fol-
lowing theorem validates this assertion.

Theorem 3 Assume that fvng is independent of fung. If
fvng or fung or both are continuously distributed random
sequences, PE holds, UCT holds, and fvng is ergodic, then
the estimator of the OBE-ABE algorithm is a.s. consistent.

For p. consistency, ergodicity of fvng and the indepen-
dence of fung and fvng are not required in Theorem 3.
The following theorem is an important special case of The-
orem 2.

Corollary 1 Assume that fvng is independent of fung. If
PE holds, UT holds, and fvng is independently identically
distributed (i.i.d.), then the estimator of the OBE-ABE al-
gorithm is a.s. consistent.

Proof : Since UT and UCT imply each other with the
i.i.d. assumption, and i.i.d. implies mixing, a.s. consistency
follows immediately from Theorem 2. 2

The following corollaries assert the a.s. consistency of the
OBE-ABE algorithm when certain distributions of vn are
known.

Corollary 2 Assume that fvng is stationary and indepen-
dent of fung. If fvng is uniformly distributed and PE holds,
then the estimator of the OBE-ABE algorithm is a.s. con-
sistent.

Corollary 3 Assume that fvng is stationary and indepen-
dent of fung. If fvng is binary Bernoulli distributed with
P (vn =

p
�) > � or P (vn = �p�) > �; 8 n, and PE

holds, then the estimator of the OBE-ABE algorithm is
a.s. consistent.

Note that all the theorems in this section are also valid
for conventional OBE algorithms (and the EPA algorithm)
with exact bounds since, for the OBE-ABE algorithm, n !
� as n!1 [6]. Please refer to [6, 9] for details.

3. SUB-OBE-ABE ALGORITHM

In this section, we introduce a modi�ed OBE-ABE algo-
rithm (the Sub-OBE-ABE algorithm) in which an O(m)
checking for innovation is employed.
A modi�cation of conventional OBE algorithms to

achieve O(m) checking can be found in [2, 3]. The mod-
i�ed OBE algorithms (Sub-OBE algorithm) in [2, 3] are
actually O(�m2) complexity with � indicating the fraction
of data found to be innovative. An O(m) check for innova-
tion is used which is similar to the check in [1]. Hence, the
Sub-OBE algorithm in [2, 3] is an O(m) algorithm for small
m since � is typically near 0.1 for a uniformly distributed
fvng.
However, the Sub-OBE checking cannot be applied di-

rectly to the OBE-ABE algorithm, since the blind error-
bound estimation procedure will fail [6]. Hence, the
Sub-OBE-ABE algorithm is incorporated with an O(m)
checking formula for innovation: c0n = mn � m"2n �
�n�1x

T

nxn=dn�1 < 0; where dn has the recursion: dn =
(1 � �n)dn�1 + �nx

T

nxn. �n in this recursion is the data
weight. The Sub-OBE-ABE algorithm is compared to the
OBE-ABE algorithm with regard to convergence speed and
computational complexity in Section 5.
All the theorems in the previous section are valid for the

Sub-OBE-ABE algorithm under the same conditions [6].

4. ADAPTIVE SUB-OBE-ABE

Adaptive OBE algorithms have been shown to have superior
tracking capability to RLS, LMS, and their variants [2, 11].
In [11], Rao and Huang modi�ed the OBE algorithm by
resetting �n�1, whenever �n < 0, to a value � + K1 or
�+K2, where � is set to 1, and K1, and K2 are two positive
values depending on the algorithm's parameters and data
at time n. This is equivalent to the resetting of �n�1 to a
value greater than 1 whenever �n < 0.
In [2], Deller et al. proposed numerous methods for mod-

ifying OBE algorithms to be adaptive to time-varying en-
vironments. Among those methods, best tracking perfor-
mance results from the selective forgetting method which
back-rotates previously accepted data sets when �n < 0,
until �n > 0.
In this paper, we propose an adaptive Sub-OBE-ABE

algorithm by modifying Sub-OBE-ABE to include resetting
of �n = 0:1 whenever �n < 0. Simulations show that this
algorithm has excellent tracking performance in slow and
fast time-varying environments.

5. SIMULATIONS

In this section, we describe simulations to support the the-
orems and adaptive Sub-OBE-ABE algorithm proposed in
the previous sections.



The simulations for the consistent convergence of the
OBE-ABE algorithm in a non-zero-mean i.i.d. error en-
vironment are found in [9]. Here, we compare the sim-
ulation results of the OBE-ABE algorithm with those of
conventional OBE (SM-SA) algorithm using an AR(12)
model with correlated non-zero-mean error sequence fvng:
yn = a1�yn�1+a2�yn�2+ � � �+a12�yn�12+vn; where a1� =
�0:1; a2� = 0:9175; a3� = �0:191; a4� = �0:2253; a5� =
0:2601; a6� = 0:0046; a7� = �0:0367; a8� = �0:0209; a9� =
�0:0082; a10� = 0:0095; a11� = �0:0052, and a12� =
�0:0041, and vn is a correlated non-zero-mean sequence
generated by a correlated sequence fwng: vn = f1; if wn >
�1; �1; otherwiseg. wn is generated by: wn = �0:8wn�1+
zn, where zn � U(�1; 1) is i.i.d. Both algorithms run with
an overestimated bound 0 = 1:5 since the true error bound
of fvng (� = 1) is assumed unknown. As seen in Figs. 1
and 2, the OBE-ABE algorithm, within 2000 steps, con-
verges with 7:5% of data being selected while the OBE al-
gorithm, with 8% of data being selected, does not converge
well to the true parameter a1� = �0:1.
Simulations also show that, for both algorithms to achieve

same desired volume of ellipsoid, the Sub-OBE-ABE al-
gorithm requires fewer steps and fewer selected data than
those of Sub-OBE algorithms or OBE algorithms.

Simulations show that the convergence speed of the
Sub-OBE-ABE algorithm and the OBE-ABE algorithm
are comparable while the Sub-OBE-ABE algorithm selects
fewer data. Figures 3 and 4 show the simulation results
in the same correlated-error noise environment except the
model is an AR(3) with a1� = 2; a2� = �1:48; a3� = 0:34.
In this case, the Sub-OBE-ABE algorithm uses, on average,
6% of the data to update the estimator while the OBE-
ABE algorithm uses 16%. Other simulations, in the case
of i.i.d. and uniformly distributed fvng, show that the Sub-
OBE-ABE algorithm uses, on average, 3:5% of the data to
update the estimator while the OBE-ABE algorithm uses
6%. Simulations also show that the convergence perfor-
mance and computational e�ciency of Sub-OBE-ABE are
not a�ected by the order (m) of system.

Both Sub-OBE-ABE and OBE-ABE are more robust to
a noisy environment than conventional OBE algorithms.
Please refer to [6, 9] for more details.

To show the tracking performance of the Sub-OBE-ABE
algorithm, let us consider a time-varying AR(2) model
yn = a1�yn�1 � 0:68yn�2 + vn in which a1� varies between
�1:6 and 1:6 (as in [2]). This is equivalent to varying the
system's conjugate poles 0:8� j0:2 to and from �0:8� j0:2.
The variations of a1� (abruptly or gradually) are shown as
dashed lines in Figs. 5 and 6. The error sequence fvng is
i.i.d. and uniformly distributed on [-1,1].

Although \non-adaptive" OBE algorithms often have
good tracking capability, they eventually loose tracking in
time-varying environments as shown in [2, 11]. However,
in the same environments or faster-changing environments,
the adaptive Sub-OBE-ABE algorithm (0 = 1:5, � = 0:02,
M = 70) keeps track of the variations very well with no
more than 7:5% of data selected (� in each �gure) as shown
in Figs. 5 and 6 (not shown here for slow system). Com-
paring these diagrams with those in [2, 11] shows that the
adaptive Sub-OBE-ABE algorithm has comparable or bet-
ter tracking capability.

6. CONCLUSION

This paper presents an OBE-ABE algorithm, Sub-OBE-
ABE algorithm, and an adaptive version of the two algo-
rithms. Included are su�cient conditions for a.s. and p. con-
sistent convergence of all OBE-type algorithms (and the
EPA algorithm [12]) under various conditions (i.i.d., corre-
lated, or non-stationary) for the ARX model. A necessary
condition for the shrinking of ellipsoids of OBE algorithms
(hence, the OBE-ABE and Sub-OBE-ABE algorithms) to
a point a.s. is also included. Simulations demonstrate that,
if the noise bound � of random sequence fvng is unknown
a priori, the new algorithms proposed in this paper are
superior to any conventional OBE algorithm with respect
to convergence, speed of convergence, computational e�-
ciency, robustness to measurement noise, and tracking ca-
pability in slow and fast time-varying environments.
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Figure 1. Estimates a1 of OBE (SM-SA) (0 = 1:5) and Sub-
OBE-ABE (0 = 1:5, � = 0, M = 50) in a correlated-error
environment where a1� = �0:1.
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Figure 2. Volumes of ellipsoids of OBE (SM-SA) (0 = 1:5)
and Sub-OBE-ABE (0 = 1:5, � = 0,M = 50) in a correlated-
error environment.
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Figure 3. Estimates a1 of OBE-ABE and Sub-OBE-ABE (0 =
1:5, � = 0, M = 50) in a correlated-error environment where
a1� = 2.
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Figure 4. Volumes of ellipsoids of OBE-ABE and Sub-OBE-
ABE (0 = 1:5, � = 0, M = 50) in a correlated-error environ-
ment.
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Figure 5. Result of using adaptive Sub-OBE-ABE on an
abruptly varying system. � = 3:5%.
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Figure 6. Result of using adaptive Sub-OBE-ABE on a grad-
ually varying system. � = 7:5%.


