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ABSTRACT

A method for the direction-of-arrival (DOA) estimation of
coherent signals is proposed, based on the adaptive version
of Pisarenko's harmonic retrieval method. It is known that
for the DOA estimation of coherent signals, the computed
covariance matrix of the sensor array must be spatially
smoothed to preserve its full rank. Adaptive algorithms
using the Conjugate Gradient (CG) methods can take ad-
vantage of this pre-processing by incorporating the avail-
able smoothed matrix into the algorithm. The proposed
algorithm uses the CG algorithm presented in [3] in com-
bination with spatial and temporal smoothing techniques.
Our simulations show that the proposed algorithm has a
fast convergence rate even when the input signals are co-
herent. Due to the use of an updated covariance matrix
at each time instant, no internal iterations are used as in
regular CG methods, resulting in a more e�cient algorithm
than previously proposed CG methods.

1. INTRODUCTION

Recently, Conjugate Gradient (CG) methods have been
suggested for adaptive �ltering and spectral estimation
[1, 2, 3, 4, 5]. In all these methods, it is necessary to
estimate the covariance matrix of the input data vector,
which is usually obtained by ensemble averaging, using a
rectangular data window as in [1, 2, 4] or an exponentially
decaying data window as in [2, 3, 5].
In array signal processing, for the estimation of the

direction-of-arrival (DOA) of coherent signals, the covari-
ance matrix must be explicitly computed by averaging the
covariance matrices of subarrays [8, 9, 11, 12]. This is also
known as Spatial Smoothing. The computation of the spa-
tially smoothed covariance matrix is necessary because the
presence of coherent signals results in a rank-de�cient ma-
trix. By applying spatial smoothing techniques, the rank of
the covariance matrix can be restored. In this case, Conju-
gate Gradient methods are especially suitable to implement
a DOA estimator due to the availability of the covariance
matrix. In [7], the Conjugate Gradient method was used
with spatial smoothing to solve the beamforming problem.
It was shown, in their particular implementation, that spa-
tial and temporal smoothing techniques give comparable
results for uncorrelated signals. Here, the CG algorithm
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presented in [3] is applied to the DOA estimation problem.
It will be shown that, using spatial and temporal smooth-
ing techniques to compute the covariance matrix, the con-
vergence of the adaptive DOA estimator is fast, even for
coherent signals. Furthermore, by allowing the covariance
matrix to vary between iterations as described in [2, 3],
computationally more e�cient algorithms can be obtained.

2. DIRECTION-OF-ARRIVAL (DOA)

ESTIMATION

First, consider that p incoherent narrow-band planar wave-
fronts are impinging on a uniformly spaced linear array of
omnidirectional sensors. The data vector of length M can
be described as

y(n) = x(n) + v(n) (1)

where v(n) is a white additive noise vector and x(n) is the
signal vector. (1) can be rewritten as

y(n) = As(n) + v(n) (2)

where s(n) is the vector with the complex amplitude of the
p signals, and A is the M � p Vandermonde matrix de�ned
as

A = [a(�1) a(�2) � � � a(�p)] (3)

where

a(�i) = [1 e
j�i e

j2�i � � � e
j(M�1)�i ]T : (4)

The vector a(�i) is called the \steering vector" and the
electrical angle �i of the incident wave is given by

�i = 2�
d

�
sin�i = !0�i

where � = c=f0, c is the speed of propagation, !0 = 2�f0,
�i =

d
c
sin�i, d is the uniform sensor spacing, and �i is the

angle of incidence (direction-of-arrival) of the signal. The
covariance matrix of the input data vector is given by [8, 9]

R = E[y(n)y(n)H ] = ASA
H + �

2

vI (5)

where (�)H denotes the transpose conjugate, S =
E[s(n)s(n)H ] is a diagonal p � p matrix whose elements
specify the power of each signal and ASAH has full rank p



for uncorrelated sources. Usually we have p < M , so that
the minimum eigenvalue of R is �2v.
The eigenvector qmin corresponding to the minimum

eigenvalue �2v is orthogonal to the columns of the matrix
A. Furthermore, the angles of the roots of a polynomial,
whose coe�cients are the elements of qmin, are the har-
monic frequencies contained in R, i.e., the electrical an-
gles. When the source signals are uncorrelated, the matrix
ASAH has full rank (p) and the electrical angles can be
estimated from the elements of qmin, as in Pisarenko's har-
monic retrieval method. From the electrical angles �i, the
direction-of-arrival of the wavefronts �i can be determined.

3. IMPLEMENTING DOA ESTIMATION OF

COHERENT SIGNALS USING SPATIAL

SMOOTHING

When the input signals are coherent (perfectly correlated)
or highly correlated, the rank ofASAH will drop [8, 11, 12].
Because of the Vandermonde structure of A, no linear com-
bination of steering vectors (in the case of correlated sig-
nals) can result in another steering vector. Consequently,
the electrical angles cannot be estimated from qmin. In or-
der to avoid the collapse of the rank of R and consequently
the rank of ASAH , spatial smoothing methods have been
proposed that guarantee full rank for the smoothed R

[8, 11, 12, 13].
A simple method of Spatial Smoothing (SS) consists of

the averaging of the covariance matrices of subarrays. The
method is described as follows:
Consider p completely coherent sources, where a \snap-

shot" of the M sensor outputs at any time instant is given
by

y(n) = [y1(n); y2(n); ::: ; yM (n)]T :

De�ne k subarrays of length p+ 1 as

z1(n) = [y1(n); y2(n); ::: ; yp+1(n)]
T

z2(n) = [y2(n); y3(n); ::: ; yp+2(n)]
T

...

zk(n) = [yk(n); yk+1(n); ::: ; yM(n)]T

then compute a spatially smoothed covariance matrix as

RSS =
1

k

kX

i=1

E[zi(n)zi(n)
H ]: (6)

It has been shown in [8, 11, 12, 13] that the matrix RSS ,
also called the forward spatially smoothed covariance ma-
trix [8], has full rank p when k � p. After computing the
spatially smoothed covariance matrix of the subarrays, it
is still possible to use time averaging (temporal smoothing)
as shown in [3], resulting in

R(n) = �fR(n� 1) +RSS : (7)

4. THE ADAPTIVE IMPLEMENTATION OF

PISARENKO'S HARMONIC RETRIEVAL

METHOD USING THE CG ALGORITHM

The CG algorithm presented in [2] is reproduced here for
convenience:

Set initial conditions: w(0) = 0; g(0) = b(0); p(1) =
g(0); n = 1.

�(n) = �
p(n)Tg(n� 1)

p(n)TR(n)p(n)
(8)

w(n) = w(n� 1) + �(n)p(n) (9)

g(n) = �fg(n� 1)� �(n)R(n)p(n) (10)

+x(n)(d(n)� x(n)Tw(n� 1)) (11)

�(n) =
(g(n)� g(n� 1))Tg(n)

g(n� 1)T g(n� 1)
(12)

p(n+ 1) = g(n) + �(n)p(n) (13)

where �(n) is the step size that minimizes a cost function
f(w), de�ned as f(w) = 1

2
w(n)TR(n)w(n) + b(n)Tw(n)

(see [2]), �(n) provides quasi R-conjugacy for the direc-
tion vector p(n), g(n) is the residual vector de�ned as
g(n) = �rf(w)T , R(n) is the estimated covariance ma-
trix of the input data vector x(n), and � in (8) controls the
convergence of the algorithm as described in [2].
This algorithm was used in [3] to implement an adaptive

version of Pisarenko's harmonic retrieval method. Other
adaptive implementations can be found in [4, 10]. Here we
use it to implement an adaptive DOA estimator for coher-
ent sources. The algorithm becomes

Set initial conditions: �w(0) = [1; 0; :::;0]T ; g(0) =
[�1; 0; :::;0]T , p(1) = g(0), n = 1.

�(n) = �
p(n)Hg(n� 1)

p(n)HR(n)p(n)
(14)

w(n) = �w(n� 1) + �(n)p(n) (15)

�w(n) = w(n)=kw(n)k (16)

g(n) =
1

kw(n)k
[�fg(n� 1)� �(n)R(n)p(n)

�
1

k

kX

i=1

zi(n)zi(n)
H �w(n� 1)] (17)

�(n) =
(g(n)� g(n� 1))Hg(n)

g(n� 1)Hg(n� 1)
(18)

p(n+ 1) = g(n) + �(n)p(n) (19)

where kwkk = (wH
k wk)

1=2, R(n) is the covariance matrix
de�ned in (7), and the covariance matrices of subarrays used
in RSS are estimated using their instantaneous versions.
After the convergence of the algorithm, �w(n) will converge
to �qmin as shown in [3].
Note that the algorithm doesn't provide exact R-

conjugacy for the direction vector p(n) due to the use of
a variable R for each time instant, and due to the weight
vector normalization. In this situation, the algorithm will
not converge in �nite steps as in the regular CG methods
[6]. Therefore it is preferable not to use internal iterations
per time instant, reducing the complexity of the algorithm.
The use of time averaging (temporal smoothing) in addi-
tion to the spatial smoothing improves the performance of
the algorithm by reducing the estimation noise. The e�ect
of using various window lengths for the computation of the
time averaged matrix R has been shown in [3].
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Fig. 1. DOA estimates for two uncorrelated signals

at 9� and 12�. NLMS algorithm.
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Fig. 2. DOA estimates for two uncorrelated signals

at 9� and 12�. CG algorithm.

In (6) only a forward SS covariance matrix is computed.
It is also possible to incorporate a backward SS covariance
matrix to increase the e�ective aperture of the sensor array,
thus reducing the number of sensors necessary to implement
spatial smoothing [8, 9, 13].
The performance of the DOA estimator can be further

improved by using the unconstrained CG algorithm shown
in [3]. The unconstrained CG algorithm provides a better
convergence rate and less estimation noise.

5. SIMULATIONS

Consider a test setting similar to the one described in [14]
where two closely spaced equal-power uncorrelated plane
waves are impinging on an 4-sensor uniform linear array
with SNR=20. The uncorrelated receiver noise is white,
zero mean, and with unit variance. The signal sources
are kept at �xed angles of 9� and 12�. Only time aver-
aging is used in the computation of R. Figs. 1 and 2 com-
pare the DOA estimates of the normalized LMS algorithm
with �NLMS = 0:1 and the proposed CG algorithm with
�f = 0:95 and � = 0:7, respectively. The mean and the
standard deviation of the estimates, after the convergence

Table I. Simulation results for the CG, the NLMS,

and the RLS algorithms.

�1 �2
mean std mean std

NLMS 8.9735 0.1840 11.9433 0.2225

CG 9.0304 0.0455 11.9866 0.0362

RLS 9.0368 0.0469 11.9878 0.0453
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Fig. 3. DOA estimates for two coherent signals at

10� and 20�. CG algorithm.

of the algorithms, are shown in Table I, where results us-
ing the RLS algorithm with �f = 0:95 are also shown for
comparison purposes. It can be seen that the CG algorithm
performance is as good as the performance of the RLS al-
gorithm, for uncorrelated sources.
Next, consider the same test, but with two coherent

sources at 10� and 20� and an 8-sensor array. The array is
divided into subarrays and spatial and temporal smoothing
are used. Here �f = 0:8, � = 0:6, and w(n) has length 4.
When spatial smoothing is not used, all algorithms tested
failed to distinguish the two coherent sources. Figs. 3 and 4
show the performance of the proposed CG algorithm with
coherent sources. Consider now the same setting for co-
herent sources, but only spatial smoothing is used. Fig.
5 shows the performance of the algorithm. Notice the in-
crease in the estimation noise. Finally, consider two �xed
sources at 5� and 22� and one moving source varying from
12� to 15� in 300 units of time. Fig. 6 shows the track-
ing capability of the proposed algorithm. Ten independent
trials are shown.

6. CONCLUSION

A method for DOA estimation of coherent signals has been
described, based on the adaptive version of Pisarenko's har-
monic retrieval method. The Conjugate Gradient algorithm
presented in [3] was used, taking advantage of the availabil-
ity of the computed covariance matrix. The simulations
show that the proposed algorithm has a fast convergence
rate even when the input signals are coherent. Due to the
use of an updated R at each time instant, no internal iter-
ations are used as in regular CG methods [6], resulting in
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10� and 20�. CG algorithm.
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Fig. 5. DOA estimates for two coherent signals at

10� and 20�. CG algorithm with spatial smoothing

only.
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Fig. 6. DOA estimates. CG algorithm tracking

moving source. Ten independent trials.

a computationally more e�cient algorithm than previously
proposed CG methods.
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