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ABSTRACT

An analysis of the local convergence speed of constant gain
algorithms for direct form IIR adaptive ¯lters is initially
presented, showing the adverse e®ects that result from the
proximity of the poles of the modelled system to the unit
circle and, for complex poles, to the real axis. A global
analysis of the reduced error surface in these cases is also
presented, which shows that, away from the global mini-
mum, there will be regions with an almost constant error,
where the convergence of constant gain algorithms tends to
be slow. A polyphase IIR adaptive ¯lter is then proposed
and its local and global convergence properties are investi-
gated, showing it to be specially well suited for applications
with underdamped low-frequency poles. The polyphase
structure is tested with di®erent constant gain algorithms
in an echo-cancellation example, attaining a gain of 14 to
70 times in global convergence speed over the direct form,
at the price of a relatively modest increase in computa-
tional complexity. A theorem concerning the existence of
stationary points for the polyphase structure is also pre-
sented.

1. INTRODUCTION

IIR adaptive ¯lters have the potential for providing consid-
erably more e±cient solutions than FIR adaptive ¯lters in
applications where the modelling of a system with highly
underdamped poles (poles close to the unit circle) is re-
quired. This potential, however, hasn't yet been full¯lled.
One of the major reasons for this is that simple constant-
gain algorithms for IIR adaptive ¯lters may converge very
slowly to the optimum solution, for example, only in 104

to 105 iterations, or even worse. This can be observed
for recursive gradient (RG) algorithms, Steiglitz-McBride
Method (SMM) type of algorithms, SHARF and pseudo-
linear regression (PLR) algorithms, alike. (The original ref-
erences on these algorithms can be found in [1] and in [2]).
Newton type algorithms, on the other hand, while having
faster convergence, have a larger computational complex-
ity than constant gain algorithms, which could take away
much of the expected computational gain over FIR adap-
tive ¯lters. This would be specially true if the input signal
would allow a constant gain algorithm for the FIR case.
The purpose of this paper is twofold:
1) To present an analysis of the local convergence speed

of constant gain algorithms for direct form IIR adaptive ¯l-
ters, showing the adverse e®ects that result from the prox-
imity of the poles of the modelled system to the unit circle
and, for complex poles, to the real axis. This analysis
derives from the formulation in [1]. A global analysis of
the reduced error surface in these cases is also presented,

which shows that, away from the global minimum, there
will be regions with an almost constant error, where the
convergence of constant gain algorithms tends to be slow.
When considering the global convergence speed of such al-
gorithms, this must be, therefore, taken into account, in
addition to a low local convergence speed. This means
that, unfortunately, in terms of convergence speed, the per-
formance of simple direct form IIR adaptive ¯lters is likely
to be poor (using constant-gain algorithms) in the cases for
which they attain a greater computational gain over FIR
adaptive ¯lters.
2) To propose a polyphase adaptive IIR ¯lter which, in

terms of the preceding analysis, exhibits better local and
global properties than the direct structure. This struc-
ture can be adapted by any one of the algorithms used
to adapt the direct structure, and in the case of systems
with highly underdamped low-frequency poles, can attain,
in exchange for a relatively modest increase in computa-
tional complexity, a much greater convergence speed than
the direct structure.

2. LOCAL CONVERGENCE ANALYSIS

We consider that the system being modelled is H(z) =
C(z)=D(z), where deg[H(z)] = N is the minimum number
of delays needed to implementH(z), and that the adaptive

¯lter has the form: bH(z) = B(z)=A(z) = (b0 + b1z + : : : +

bMz
M )=(1+a1z+ : : :+aMz

M ); M = N . Constant gain al-
gorithms for IIR adaptive ¯lters such as recursive gradient
(RG), Steiglitz-McBride method (SMM) and pseudo-linear
regression (PLR) have the general form

w(n+ 1) = w(n) + ¹g(n)e(n); (1)

where vector w(n) contains the 2M + 1 adaptive coe¯-

cients, e(n) = [H(z)¡ bH(z)]u(n) is the output error for
an input u(n), ¹ is the adaptation gain and g(n) depends

on the algorithm. At the global minimum H(z) = bH(z);
local convergence speed depends on the eigenvalue spread

of the information matrix I(C;D) = E
©
g(n)g>(n)

ª
[1]

which can be written as I(C;D) = S(C;D)R(D)S>(C;D);
where S(C;D) is a resultant matrix formed by C(z)

and D(z), and R(D) = E
©
q(n)q>(n)

ª
; with q(n) =

[u(n)=Q(z) ¢ ¢ ¢ u(n ¡ 2M)=Q(z)]>. For RG and SMM

algorithms Q(z) = D2(z) and for the PLR algorithm
Q(z) = D(z). The eigenvalue spread of I; denoted by Â(I);

is limited by Â(R)=Â(SS>) · Â(I) · Â(R)Â(SS>) [1], and

Â(SS>) < 1 if C(z) and D(z) are coprime. Therefore, if
the roots of C(z) are su±ciently far away from the roots
of D(z), the variation of Â(R) with D(z) can serve as an



indicator of the variation of Â(I) with D(z). Based on
this, further analysis is aimed at the factors a®ecting the
eigenvalue spread of R.
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R is a symetric Toeplitz matrix whose ¯rst line is r1 =
¾2[ 1 ½(1) ¢ ¢ ¢ ½(2M) ]. We consider the case when
D(z) has, among other roots, a pair of complex roots at

re§jµ. It can be shown [6] that, as long as the spectral

density of the input u(n) has no zeros at e§jµ; as the roots
approach the unit circle, the ¯rst line of R, as would be
expected from an intuitive reasoning, tends to

lim
r!1

r1 = ¾
2
[ 1 cos µ ¢ ¢ ¢ cos 2Mµ ]; (3)

which implies that the rank of limr!1R is not greater than
2 [3]. When H(z) has at least pair of complex poles, M ¸

2; and it follows that, as these poles approach the unit
circle, the eigenvalue spread of R tends to in¯nity, and
local convergence speed tends to zero.
We now consider the e®ect of the angle µ on the eigen-

value spread of R. Indicating the 2M eigenvalues of R by
f¸i(R)g, and, for greater simplicity, considering u(n) as
unit power white noise, we have [3]

minf¸i(R)g = min
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where e = [e0 e1 : : : e2M ]> and E(z) = e0 + e1z + : : : +

e2Mz
2M : Now, since

P2M

i=1 ¸i(R) = tr[R] = 2M¾2 it fol-

lows that ¾2 · maxf¸i(R)g · 2M¾2, and
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where Q0(ej!) = ¾Q(ej!) and therefore k1=Q0(z)k
2
= 1:

If an E(z) can be found such that the integral above is
low, it follows that the eigenvalue spread of R must be
large, due to the existence of the lower bound above. The
e®ect of the angle µ can then be assessed by a frequency
domain analysis of the requirements of E(z) to ful¯ll such

a condition: for r ' 1 and small values of µ;
¯̄
1=Q0(ej!)

¯̄
is concentrated close to the origin, so that if all the roots
of E(z) are placed in the same region,

¯̄
E(ej!)=Q0(ej!)

¯̄
will be low for any !. For larger values of µ,

¯̄
1=Q0(ej!)

¯̄
is not so concentrated close to the origin, and the roots
of E(z) have to be divided accordingly, resulting in values

of
¯̄
E(ej!)=Q0(ej!)

¯̄
which are not as low as previously.

Therefore, it is to be expected that, for a given r ' 1, the
eigenvalue spread of R grows as µ tends to zero, that is, as

the pair re§jµ tends to the real axis. This can e®ectively
be observed in practice.

3. ANALYSIS OF THE REDUCED ERROR
SURFACE

In the following, input u(n) is assumed to be white, though
a similar analysis could be carried out for general inputs.

When the zeros of bH(z) are such that the mean square

error kH(z)¡ bH(z)k22 is minimized for a given set of poles,
we have [2]:

H(z)¡ bH(z) = g(z)V (z); where g(z) = [V (z
¡1
)H(z)]+;

(6)
[:]+ being the strictly causal projection operator, and
V (z) being the all-pass function given by V (z) =

zMA(z¡1)=A(z): Note that kH(z) ¡ bH(z)k22 = kg(z)k22,
which, taken as a function of the parameters that establish
the poles of the adaptive ¯lter, is termed the reduced error
surface.

Consider, for simplicity, that deg[C(z)] · deg[D(z)] =
N , and that H(z) doesn't have multiple poles. H(z)
can therefore be expanded in residues as H(z) = K0 +PN

i=1 ri=(z¡zi): Using (6), whe obtain, after some manip-
ulations:

g(z) =

NX
i=1

Ri

z

z ¡ zi
; Ri = V (z

¡1
i )

ri

zi
: (7)

Using now this expression to calculate kg(z)k
2

2 by integra-
tion in z; we obtain:

kg(z)k2
2 =
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jRij
2

jzij
2
¡ 1

+

NX
j=1

NX
i=1

Ri 6= R
¤

j

RiRj

zizj ¡ 1
:

The case of poles close to the unit circle can now be in-
troduced. Consider there are poles such that jzij ' 1 and
jRij 6' 0, and that the expression above is dominated by

m of these poles: kg(z)k
2

2 '
Pm

i=1 jRij
2
=(jzij

2
¡ 1): If the

poles of bH(z) are su±ciently far away from these poles of

H(z), then
¯̄
V (z¡1i )

¯̄
' 1, since jzij ' 1 and V (z) is all-

pass. Therefore, under these conditions, a variation of the
parameters that establish the poles of the adaptive ¯lter

has only a small efect on the mean square error kg(z)k
2

2 ,
that is, we are in a °at region of the reduced error surface.
As an example, we take the transfer function used in [4]
to model an echo-path in HSDL loops, which, after nor-
malization is H(z) = (0:2178¡ 0:8402z + 0:7971z2)=(1 ¡

1:3148z+0:3591z2). The reduced error surface for this case
is plotted in ¯gure 1a), where the existence of a °at region
away from the global minimum is clear.

Basically, the negative e®ect of this kind of error surface
on the convergence of constant gain algorithms is that the
steepness of the surface around the global minimum im-
poses a relatively low adaptation gain, which, in the °at
region results in slow convergence. This e®ect is clear for
gradient based algorithms. For other constant gain algo-
rithms the e®ect is not as clear, though it can be argued
that convergence is slower than in a steeper region, and
this can e®ectively be observed in practice.

It should be noted that the existence of these regions is
not only relevant when the initial values of the coe¯cients of
the adaptive ¯lter are far from their optimum values. For
systems with poles close to the unit circle, even a relatively
small error in the values of the coe±cients can place them
in a °at region of the reduced error surface.



4. A POLYPHASE IIR ADAPTIVE FILTER

The adaptive ¯lter bH(z) is now considered as having a
polyphase structure:

bH(z) =

p¡1X
l=0

bHl(z
p
) =

bP;0 + bP;1z + ¢ ¢ ¢+ bP;pMz
pM

1 + aP;1zp + ¢ ¢ ¢+ aP;MzpM
(8)

(where p is the polyphase expansion factor), which is indi-

cated by writing bH(z) = BP (z)=AP (z
p).

Initially, the question of eigenvalue spread is adressed.
At the global minimum, g(n) in (1) is now a (p+1)M +1
vector and the information matrix can be written as

IP (CP ;DP ) = SP (CP ;DP )R
(p)

P
(DP )S

>

P (CP ;DP ); (9)

where CP (z) and DP (z
p) come from the polyphase form

of H(z). Matrix SP (CP ;DP ) has (p+ 1)M + 1 rows and
2pM + 1 columns and is not strictly the resultant ma-
trix formed by CP (z) and DP (z

p), which we denote by
S(CP ; DP ) and which would have 2pM+1 rows instead and
rank equal to 2pM+1 ¡deg[T(z)], where T(z) is the maxi-
mum common divider of CP (z) andDP (z

p) [5]. IfC(z) and
D(z) have no common divider then, deg[T (z)] = (p¡ 1)M
and the rank of S(CP ;DP ) would be (p+1)M+1. Though
this remains to be proved we conjecture, based on several
numerical examples, that after (p¡1)M rows of S(CP ;DP )
have been eliminated to obtain SP (CP ;DP ) its rank is still

(p + 1)M + 1. If this is always true, then SPS
>

P is non-
singular when C(z) and D(z) have no common divider,
which means that SP (CP ;DP ) would provide a suitable
generalization of S(C;D) to the polyphase case:

As in section 2, we turn now to the analysis of R
(p)

P .
When u(n) is white its elements are given by

½
(p)

P (i) =
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¾2P
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½
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where ¾2P =
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d!=2¼, and as previously,

QP (z
p) = D2

P (z
p) for the RG and SMM algorithms and

QP (z
p) = DP (z

p) for the PLR algorithm. A few manipu-
lations permit to obtain the following property [6]:

Property 1 The elements ½
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P ; given by (10),
take on the values given by

½
(p)

P (i) =

8<
:

1

¾2P

1

2¼

2¼R
0

¯̄̄
¯ 1

QP (ej!)

¯̄̄
¯
2

ej!md!; i =mp;

0 i 6=mp:
(11)

We now obtain a matrix, denotedRP ; by eliminating the

null elements of R
(p)

P , so that RP is a symmetric Toeplitz
matrix whose ¯rst line rP;1 is given by

rP;1 = ¾
2
[ 1 ½P (1) ¢ ¢ ¢ ½P (2M) ]; (12)

where ½P (m) = ½
(p)

P (mp):The following property can be
proved [6]:

Property 2 The eigenvalue spread of matrix RP de¯ned

by (12) is equal to the eigenvalue spread of matrix R
(p)

P in
(9).

This property is very useful since it means that the ef-
fects of the position of the roots of D(z) on the eigenvalue

spread of R
(p)

P
for the polyphase ¯lter can be investigated

entirely by means of the e®ects of DP (z) on the eigenvalue
spread ofRP , which is exactly the same kind of problem al-
ready adressed in section 2. Now, the roots zP;i of DP (z)
are related to the roots zi of D(z) by zP;i = z

p

i , which
means that zP;i is not as close to the unit circle as zi, and,
for complex roots, depending on the angle of zi and the
polyphase expansion factor p; zP;i will not be as close to
the real axis as zi. As seen in section 2 these both factors
tend to reduce the eigenvalue spread and therefore increase
the local convergence speed around the global minimum.
When the modelled system has low-frequency poles close
to the unit circle, for a convenient range of values of p the
roots of DP (z), besides not being as close to the unit circle
will also not be as close to the real axis as the roots ofD(z).
Therefore, in these cases, the proposed polyphase adaptive
¯lter structure is specially well suited as an alternative to
the direct form adaptive ¯lter.
We now consider the global properties of the reduced

error surface. It can be shown [6], extending from the non-

polyphase case, that the reduced error surface kgP (z)k
2
2 in

the polyphase case is determined by

gP (z) = [VP (z
¡p
)H(z)]+; (13)

where VP (z
p) = zpMAP (z

¡p)=AP (z
p): Following the same

approach as in Section 2, when kgP (z)k
2
2 has m dominat-

ing poles we may write kgP (z)k
2
2 '

Pm

i=1 jRP;ij
2
=(jzij

2
¡1);

with RP;i = VP (z
¡p

i )ri=zi. Since z
p

i will not be as close to

the unit circle as zi,
¯̄
VP (z

¡p

i )
¯̄
will not be as constant as¯̄

V (z¡1i )
¯̄
: The reduced error surface for which the coe¯-

cientes of AP (z) are now taken into account will not be as
°at away from the global minimum as in the direct form
case. This can be seen in ¯gure 1b), for the same echo-
cancelattion application considered previously.
An important property of error surface of the polyphase

structure is given by

Theorem 1 In the case of white input and deg[H(z)] ·

M; bH(z) as given by (8) is a stationary point of°°°H(z)¡ bH(z)
°°°2
2
; if, and only if, H(z) = bH(z):

The demonstration of this theorem is in [6] and [7] and
will not be presented here due to lack of space. It should
be noted, however, that this property does not follow di-
rectly from similar and already known properties of the

non-polyphase form of bH(z), and therefore e®ectively con-
stitutes a new result.

5. SIMULATION RESULTS

The already mentioned constant gain algorithms and a
Newton version of the RG algorithm (denoted RG/N) were
applied to the proposed polyphase adaptive IIR ¯lter struc-
ture and to the direct form adaptive IIR ¯lter, for the afore-
mentioned HSDL echo-cancelling problem. An ensemble of
100 realizations of a gaussian white noise input signal was
utilized in the more rapidly converging cases, while oth-
erwise only the ¯rst 10 realizations of the ensemble were
utilized. For each case, the mean number of iterations nc
needed to reach and maintain an output error of less than
¡60 dB in relation to the desired output was measured for
increasingly higher values of ¹ (which for the RG/N algo-
rithm corresponds to 1 minus the forgetting factor). The



selected values of ¹ were those which resulted in the lowest
nc while still assuring convergence for all of the tested re-
alizations of the input. These results are presented in the
following table and plots for the RG algorithm are showed
in ¯gures 1c) and 1d). The trade-o®s involved in the se-
lection of a particular algorithm are not under discussion
here, the important point being that, for each algorithm,
the polyphase structure converged faster than the direct
form.

Structure Algorithm ¹ nc

RG 3:5£ 10¡4 1:7£ 105

Direct SMM 4:0£ 10¡4 8:8£ 104

PLR 6:0£ 10¡3 1:4£ 104

RG/N 5:0£ 10¡2 5:5£ 102

RG 1:0£ 10¡2 2:4£ 103

Polyphase SMM 1:0£ 10¡2 2:2£ 103

(p = 4) PLR 2:0£ 10¡2 9:9£ 102

As it can be seen in the table above, the gain in conver-
gence for the constant gain algorithms speed ranges from
a factor of 14 to a factor of 70, depending on the speci¯c
algorithm.
The computational complexity was calculated for: a di-

rect form adapted with RG and RG/N algorithms; the pro-
posed polyphase structure adapted with the RG algorithm
and a transversal FIR ¯lter adapted with the LMS algo-
rithm. The total number of multiplications, additions and
divisions are listed in the following table, calculated for
the orders involved in the example which was presented
(M = 2, p = 4) and, based on [4], assuming a 100 tap FIR
¯lter.

Structure Algorithm £ + ¥

Direct IIR RG 13 12 0
Polyphase IIR RG 25 24 0
Direct IIR RG/N 92 52 1
Trans. FIR LMS 203 202 0

It can be seen that the increase in the convergence speed
attained by the polyphase structure comes, in relation to
the direct form adapted with a Newton algorithm, at a
low price in terms of computational complexity, which is
still much less than that of the FIR solution. It should
be noted also that this bene¯t over a Newton algorithm
increases with the degree of the ¯lter.
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Figure 1. a), b) example of reduced error surface of
direct form ¯lter and polyphase ¯lter, respectively;
c),d) adaptation of coe¯cientes of direct form ¯lter
and polyphase ¯lter, respectively


