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ABSTRACT

We consider adaptive periodic IIR �ltering and present

an extension of the Hyperstable Adaptive Recursive

Filter (HARF). We give conditions for convergence of

the parameter estimate error, involving passivity of cer-

tain operators in the identi�cation loop, identi�abil-

ity of the system parameters, and persistent excitation

(pe). A necessary and su�cient condition for identi�a-

bility is given and subject to its satisfaction, input-only

conditions guaranteeing pe are given.

1. INTRODUCTION

Linear priodic �lters have many important applications.

First all multirate �lters can be viewed as linear peri-

odic �lters, [1]. Second, as noted in [2], modeling of

such inherently nonstationary signals as speech, is bet-

ter accomplished using linear periodic �lters than their

linear time invariant (LTI) counterparts. By the same

token, adaptive multirate �ltering is essentially a mat-

ter of adaptive linear periodic �ltering (ALPF). Sim-

ilarly, adaptive �ltering of speech signals signi�cantly

bene�ts from ALPF. Consequently, this paper studies

ALPF.

To this end we adopt an adaptive identi�cation view

of ALPF. In particular with u(k) as input and y(k) as

output, we assume that

y(k) +

nX
i=1

ai(k)y(k � i) =

mX
j=1

bj(k)u(k � j) (1.1)

with

ai(k +N ) = ai(k) 8i; k (1.2)

and

bj(k +N ) = bj(k) 8j; k: (1.3)

Our goal is to use the knowledge of u(k), y(k), N and

n to estimate the periodic sequences ai(k) and bi(k).
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Since the basic structure of (1.1) is IIR, in Section

2 we propose a generalization of the well known Hy-

perstable Adaptive Recursive Filter (HARF), [3], that

adaptively estimates the coe�cients of IIR LTI sys-

tems. Section 3 gives conditions under which this algo-

rithm converges. For parameter convergence, one con-

dition needed is the so called persistent excitation (pe)

condition. Section 4 discusses issues connected to the

satisfaction of pe. Section 5 is the conclusion.

2. THE ALGORITHM

For convenience in (1.1) write

ai(k) = aij if j = k mod N (2.1)

bi(k) = bij : if j = k mod N (2.2)

This is possible because of the N�periodic nature of

the coe�cients.

Our task in this section is to adaptively identify aij
and bij from the input/output (I/O) data. Re-express

(1.1) as: for all 0 � j < N and k such that

k mod N = 0 (2.3)

y(k+j) =

nX
i=1

aijy(k+j�i)+

mX
i=1

biju(k+j�i): (2.4)

De�ning for 0 � j < N

	j = [a1j; a2j; : : : ; anj; b1j; b2j; : : : :bmj ]
T ; (2.5)

and for all k obeying (2.3)

XT (k + j � 1) = [y(k + j � 1); : : : ; y(k + j � n);

u(k + j � 1); : : : ; u(k + j �m)];

one obtains

y(k + j) = 	T
j X(k + j � 1): (2.6)

Thus one can view (1.1) as N interlaced LTI systems.

Accordingly, the identi�cation process too will be treated



in interlaced context, i.e. the estimate of 	j will be up-

dated only at each (k + j)-th instant, k mod N = 0.

De�ne for all k obeying (2.3) and 0 � j < N

	̂j(k + j) = [â1j(k + j); â2j(k + j); : : : ; ânj(k + j);

b̂1j(k + j); b̂2j(k + j); : : : :b̂mj(k + j)]T

as the estimate of 	j at time k + j. Next, for each k

obeying (2.3) de�ne the a posteriori and a priori pre-
diction outputs respectively as

ŷ(k + j) = X̂(k + j � 1)T 	̂j(k + j) (2.7)

and

ŷ(k + j) = X̂(k + j � 1)T 	̂j(k + j � 1); (2.8)

where

X̂T (k + j � 1) = [ŷ(k + j � 1); : : : ; ŷ(k + j � n);

u(k + j � 1); : : : ; u(k+ j �m)]

and

X̂
T
(k + j � 1) = [ŷ(k + j � 1); : : : ; ŷ(k + j � n);

u(k + j � 1); : : : ; u(k+ j �m)]:

Also de�ne the a posteriori and a priori prediction
errors respectively by

e(k) = y(k) � ŷ(k) (2.9)

and

e(k) = y(k) � ŷ(k): (2.10)

Then the parameter estimate update equations proceed

as: for all k obeying (2.3) and 0 � j < N and 0 � l <

N ,

	̂j(k + l) =

�
	̂j(k + l � 1) if l 6= j

	̂j(k + l � 1) + �klj if l = j
(2.11)

where �klj is given by

�X̂(k + j � 1)
h
e(k + j) �

PM

i=1 dije(k + j � i)
i

1 + �X̂T (k + j � 1)X̂(k + j � 1)
:

(2.12)

Observe the prediction error is subjected to linear pe-

riodic �ltering prior to its application in the update

kernel.

3. CONVERGENCE

In the LTI case, convergence of the prediction error re-

quires that the system inputs be bounded and that the

error system obey a strict passivity condition involving

the prediction error �lter [4], where strict passivity is

de�ned in De�nition 3.1. In addition for exponential

convergence of the parameter estimates, one requires a

p.e. condition, [4]. Both these facts are also true for

the ALPF algorithm given in Section 2.

We begin with a de�nition of strict passivity.

De�nition 3.1: A system with input !(k) and output

�(k) is said to be strictly passive if there exist constants

K1 and K2, with K1 > 0, such that for all bounded

!(k), initial conditions and k,

kX
i=0

�(i)!(i) � K1

kX
i=0

!2(i) +K2: (3.1)

The constant K2 re
ects the cumulative e�ect of initial

conditions and is zero when the initial conditions are

zero. In e�ect (3.1) states that the average product of

the input and the output is positive. It is a well known

fact that all strictly passive linear time varying systems

are stable.

The passivity condition we need is given by assump-

tion 3.1; the pe condition by assumption 3.2.

Assumption 3.1 The linear periodic system

�(k) �

nX
i=1

ai(k)�(k � i) = �(k) (3.2)

�(k) =

nX
i=1

di(k)�(k � i) + �(k) (3.3)

is strictly passive, where for every integer k

di(kN + j) = dij 8 0 � j < N: (3.4)

The pe assumption in its turn is as follows.

Assumption 3.2 For each k de�ne the nN�N matrix
�k by2
6664
X(kN � 1) 0 � � � 0

0 X(kN ) � � � 0
...

...
. . .

...
0 0 � � � X(kN +N � 2)

3
7775 :

(3.5)

Then 9 �1, �2 > 0 and M2 such that for all k

�1I �

k+M2X
i=k

�i�
T
i � �2I: (3.6)

The �rst Theorem deals with prediction error conver-

gence without pe.

Theorem 3.1 Under Assumption 3.1, and bounded u(k)

lim
k!1

e(k) = 0: (3.7)



We now turn to exponential convergence of the param-

eter estimates.

Theorem 3.2 Suppose (1.1,2.1,2.2) is stable and As-
sumption 3.1 and 3.2 hold. Then 	̂(k)�	(k) converges
exponentially to zero.

4. IDENTIFIABILITY AND PERSISTENT

EXCITATION

In this section we conduct a deeper study of the pe

condition in Assumption 3.2. Observe this condition is

phrased in terms of both the input and the output of

the systems in question. Since the outputs come from

unknown systems, these conditions are of limited prac-

tical value. It is important then to derive conditions

that depend only on the system inputs and yet force

Assumption 3.1 to be satis�ed. Such input-only p.e.

conditions are what this Section seeks.

In broad terms the pe condition requires the in-

put to be such that the resulting I/O relationship is

satis�ed by a unique set of parameters. There may be

systems for which no such inputs exist. For example an

LTI system admitting a pole-zero cancellation can be

represented by multiple parameter combinations. Such

a situation is termed as lack of Identi�ability. To en-

sure input selection that guarantees pe, we must �rst

characterize identi�ability for the system in (1.1). This

is done in Section 4.1. Subject to this identi�ability

condition, Section 4.2 provides conditions on u(k) that

guarantee pe.

4.1. Identi�ability

De�ne for all integer k

Yk = [y(kN ); y(kN + 1); � � � ; y(kN + N � 1)]T

Uk = [u(kN ); u(kN + 1); � � � ; u(kN + N � 1)]T

and the forward shift operator q such that

qYk = Yk+1 and qUk = Uk+1: (4.1)

De�ne also

L = d n
N

e; (4.2)

where dae denotes the smallest integer greater than or

equal to a. Observe that (1.1) can be expressed as

LX
i=0

AiYk+i =

LX
i=0

BiUk+i; (4.3)

where each Ai and Bi is NxN and moreover obeys the

following structure: with

A = [A0; � � � ; AL]; (4.4)

B = [B0; � � � ; BL]; (4.5)

the ijth element of A obeys

Aij =

�
0 8L > j or j > i+ n

1 8j = i + n
(4.6)

and that of B obeys

Bij = 0 8i > j or j � i+ n: (4.7)

The LTI, Multiple Input Multiple Output (MIMO) sys-

tem (4.3) is called the lifted version of the linear peri-

odic system. Using (4.1) one can rewrite (4.3) as

A(q)Yk = B(q)Uk ; (4.8)

where the NxN polynomial matrices are de�ned as

A(q) = A0 + qA1 + � � �+ qLAL; (4.9)

B(q) = B0 + qB1 + � � �+ qLBL: (4.10)

Observe A has rank N . Thus, A(q) is invertible (see

[5]). Thus the lifted transfer function written in left

factor form is

A�1(q)B(q): (4.11)

We next need the following facts.

Fact 4.1: A polynomial matrix R(q) is a left common
factor of A(q) and B(q) if there exist polynomial ma-

trices �A(q) and �B(q) such that

A(q) = R(q) �A(q)

B(q) = R(q) �B(q):

Fact 4.2: A(q) and B(q) are said to be left coprime if
all their left common factors are unimodular, i.e. have

a constant, non-zero determinant.

Then we have the following result.

Theorem 4.1 The system (1.1,2.1,2.2) is identi�able
i� A(q) and B(q) are left coprime.

4.2. Persistent Escitation

Subject to the coprimeness condition in Theorem

4.1, we now give conditions on the input that guarantee

pe. To place these results in context we �rst comment

on what happens in the LTI case. Should the ai(k)

and bi(k) in (1.1) be constant, then, [4], the following

is su�cient for the pe condition for HARF: There exist

M1; �3; �4 such that for all k

�3I �

k+M1X
i=k

U2n(i)U
T
2n(i) � �4I

where

Uj(k) = [u(i); u(i+ 1); � � � ; u(i+ j � 1)]T :



Should u(k) be a linear combination of sinusoids, then

this requires at least n distinct frequency components.

This can be reconciled with intuition by noting that

in the LTI case of (1.1), there are 2n parameters to

be identi�ed. Since each frequency components car-

ries two pieces of information, amplitude and phase,

n frequency components should su�ce to identify 2n

parameters. In practice due to potential aliasing prob-

lems one can say n generic frequencies are enough.

In the N-periodic case there are 2nN parameters in

all. The foregoing arguments suggest nN input frequen-

cies would be needed. Consider, however the following

result, which indicates the contrary.

Theorem 4.2 Suppose (1.1,2.1,2.2) is identi�able and
stable. De�ne

v = n(N + 1) + N � 1:

Then Assumption 3.2 holds if there existM1; �3; �4 such
that for all k

�3I �

k+M1X
i=k

Uv(iN )UTv (iN ) � de4I:

Observe, for N � 1,

v

2
� nN;

with equality only with N = 1. Thus in fact for non-

trivial periodic systems, a less stringent requirement

has been placed. This is evidently a re
ection on the

ability of a periodic system to generate additional fre-

quencies internal to the system. This excitation en-

hancement capability is further demonstrated by the

next result, which considers inputs of the form

u(k) =

�X
i=1

Cie
j!ik; (4.12)

for complex Ci, real !i and integer �. We say that this

input has � spectral lines. Observe that a L-frequency

real input has 2L spectral lines. Then Theorem 4.3

below shows that the input needs only 2n generic spec-
tral line combinations, which is also the requirement

for a LTI system with 2n unknown parameters. Thus,

generically the periodic system generates enough inter-

nal excitation to take care of the additional unknown

parameters periodicity creates.

Theorem 4.3 Suppose (1.1,2.1,2.2) is identi�able and
stable. Then inputs of the form in (4.12) su�ce to force
the satisfaction of Assumption 3.2, for � = 2n and all
!1; � � � ; !2n save those for which 
 = [!1; � � � ; !2n]

T lies
on a set of measure zero in R2n.

5. CONCLUSION

This paper gives an extension of HARF to the linear

periodic setting. The extrension involves an interlaced

update scheme. Exponential asymptotic stability has

been demonstrated under a strict passivity condition

coupled and a persistent excitation (p.e.) condition.

We have given a necessary condition for a linear pe-

riodic system to be identi�able, and subject to its sat-

isfactions given two input-only conditions guaranteeing

p.e.. In the case when 2nN unknown constants de�ne

the input-output behavior, the �rst of these ensures

p.e. when the input comprises a linear combination of

� < Nn distinct frequency components.

The second condition shows that generic n-frequency

sinusoids su�ce for p.e. . Both these conditions re
ect

the ability of linear periodic systems to enhance the

excitation injected at their inputs.

One important open issue concerns the satisfaction

of the passivity condition on a combination of the pe-

riodic error �lter and the unknown system parameters.

For the LTI case, this problem has been solved in [6].

Whether [6] extends to this setting is a subject of cur-

rent investigation.
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