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ABSTRACT

A new method for adaptive autoregressive spectral estima-
tion based on the least-squares criterion with multi-band
decomposition of the linear prediction error and analysis of
each band through independent variable forgetting factors
is presented. The proposed method localizes the forgetting
factor adaptation scheme in the frequency domain and in
the time domain, in the sense that variations on the statis-
tics of the input signal are independently evaluated for each
band along the time. In this paper, a new forgetting fac-
tor adaptation technique depending exclusively on the in-
put signal is introduced and applied to the multi-window
analysis of the linear prediction error structure to gener-
ate time-varying autoregressive spectral estimates. An im-
provement on the �delity of estimates is shown in computer
experiments which compare the proposed method with con-
ventional and multi-band least-squares methods with �xed
forgetting factors.

1. INTRODUCTION

Time-varying autoregressive (AR) spectral estimation is
not only an important subject of practical interest, since
most signals encountered in nature are nonstationary (e.g.
speech), but is also challenging from the theoretical point of
view, since it involves several still unanswered mathematical
questions.

Application of a variable forgetting factor (VFF) in con-
nection with the least-squares (LS) optimization criterion
has been used to improve the tracking ability of time-
varying systems [1, 2, 3, 4, 5]. The functions that estimate
the degree of nonstationarity of the signal being analyzed
for the forgetting factor (FF) adaptation techniques pro-
posed so far depend on the residual power. Furthermore,
whenever a change in the spectrum is detected, even if this
change is related only to a frequency-localized part of the
input signal, the FF is updated for all components.

Recently, multi-band decomposition of the linear predic-
tion error through a �lter bank and subsequent analysis of
each band with a di�erent window was shown to give rise
to AR spectral estimates with higher �delity to the true
underlying spectrum than those obtained through conven-
tional \single-window" LS methods, particularly when the
statistics of the signal being analyzed presents a di�erent
behavior for distinct bands of the spectrum [6, 7, 8, 9].
However, multi-band decomposition-based algorithms de-
veloped until now use time-invariant FFs.

�This work was partially supported by CNPQ/Ministry of Ed-
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In this paper, a new adaptation technique for the FF
exclusively based on the estimated autocorrelation of the
input signal is introduced and applied to the multi-band de-
composition structure with independent VFFs, to estimate
the time-varying AR spectrum of nonstationary signals.
The structure of this paper follows. In Section 2, the LS

method based on multi-band decomposition of the linear
prediction error is presented. In Section 3, a new tech-
nique based on the estimated autocorrelation values of the
input signal for computing the degree of nonstationarity
is introduced and a recursive LS (RLS) algorithm is de-
rived. In Section 4, computer experiments comparing the
performance of the proposed method with conventional and
multi-band LS methods with �xed FFs (FFFs) are shown.
Section 5 presents our conclusions.

2. THE LS METHOD BASED ON
MULTI-BAND DECOMPOSITION OF THE

LINEAR PREDICTION ERROR

In conventional LS methods, for the exponentially win-
dowed case, the following cost function is minimized:

FM(n) =

nX
i=1

�
n�i

f
2
M(i) (1)

fM(i) = 1 +

MX
k=1

ak(n)u(i� k); (2)

for real values of the a posteriori forward prediction error
fM (i) [5]. The exponential window constant � is a value
between 0 and 1, the AR model coe�cients at time-index
n are represented by ak(n), 1 � k � M , and u(i) is the
input signal. A block diagram scheme for (1) is depicted in
Fig. 1(a).
The multi-band decomposition-based LS method, as can

be inferred from [6, 7, 8, 9], for the exponentially windowed
case, minimizes the following cost function

FM(n) =
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F
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f
(j)

M
(i) = h

(j)
(i) � fM (i); (5)

which is schematically shown in Fig. 1(b) for the 4-channel
case. The total cost function, de�ned in (3), is the sum
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Figure 1. Block-diagram representation of the cost
function de�nition for (a) conventional LS meth-
ods and (b) the proposed multi-window LS method
when B = 4. The \SQ" symbol represents the
square operation and W (z) is the z-transform of the
windowing function w(k).

of partial cost functions, given in (4), which contain band-
speci�c information on the statistical behavior of the an-
alyzed signal. Each band of the linear prediction error is

windowed with a suitable value �(j), j = 1; : : : ; B. By using

a power complementary �lter bank h(j)(n); j = 1; : : : ; B, we
can guarantee a uniform response of the system for all fre-
quencies in the sense that E[FM(n)] = cE[f2M(n)], where
E[:] denotes the mean value operator (refer to the Appendix
for a proof of this statement).
Minimization of (3) gives rise to a set of augmented nor-

mal equations:

�M+1(n)aM(n) = [FM(n) 0 : : : 0]
T

(6)
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(j)
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The correlation matrix shown in (7) satis�es the order-
update property [8, 9], consequently an algorithm similar
to the Levinson RLS algorithm [10], can be used to solve
(6). The autocorrelation vector, which is required as the
input to the Levinson RLS algorithm, can be evaluated as

cM+1(n) =

6
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The basic advantage of the multi-band LS method as com-
pared to conventional LS methods, is that time resolution
and frequency resolution can be traded o� along the spec-
trum enabling the use of a properly chosen window for each
band of the analyzed signal in accordance to its statistical
behavior. However, all existing algorithms based on multi-

window analysis of the linear prediction error use FFFs �(j)

which must be chosen a priori based on previous knowledge
of the input signal. Also, the tracking ability of multi-band
decomposition-based methods can be improved by using
VFFs. In the following, a new adaptation technique for the
FF is introduced and an RLS algorithm for the evaluation
of the AR model parameters is presented.

3. THE MULTI-BAND
DECOMPOSITION-BASED METHOD

WITH VFF AND ITS APPLICATION TO
AR SPECTRAL ESTIMATION

In this paper, we are proposing a new FF adaptation scheme
conceptually di�erent from methods derived so far [1, 2, 3,
4, 5] in that it is an exclusive function of the input signal.
It can be summarized as follows

�
(j)
(n) =

�
1�

1

L(j)(n)

�
�
(j)
max
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(j)
min

(12)

L
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Table 1. An RLS algorithm for AR spectral analy-
sis based on multi-band decomposition of the linear
prediction error with variable forgetting factors.

For each time-index n = 1; 2; 3; : : : compute:

For j = 1; 2; :::; B2
64

Calculate u(j)(n) using (9)

Evaluate D
(j)
M

(n); L(j)(n) and �(j)(n) using (14); (13) and

(12); respectively

c(j)
M

(n) = �(j)(n)c(j)
M

(n� 1) +
�
1� �(j)

�
u(j)(n)u(j)

M
(n);

End

cM (n) = c(1)
M

(n) + c(2)
M

(n) + � � �+ c(B)
M

(n)
F0(n) = B0(n) = c0(n)
a0(n) = g0(n) = 1

For m = 1; 2; � � � ;M compute :2
66666664

Cm�1(n) = [c1(n); :::; cm(n)]gm�1(n� 1)

Kf
m(n) = �Cm�1(n)=Bm�1(n � 1)

Kb
m(n) = �Cm�1(n)=Fm�1(n)

Fm(n) = Fm�1(n) +Kf
m(n)Cm�1(n)

Bm(n) = Bm�1(n � 1) +Kb
m(n)Cm�1(n)

am(n) =

h
am�1(n)

0

i
+Kf

m(n)

h
0
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i
gm(n) =

h
0
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i
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h
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0

i
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�
;

(17)

where [�]
�
(j)
max

�
(j)
min

denotes that * is bounded above by �
(j)
max and

also bounded below by �
(j)

min
, as shown in Fig. 2.

The facts that inspired the formulation of the function ac-

counting for nonstationarities of the input signal, D
(j)

M
(n),

are: 1) nonstationarity is inherent to the analyzed signal,
so a direct function of it or of its moments should be able
to identify spectral changes; 2) the autocorrelation function
and the energy spectral density form a Fourier pair, so it
should be possible to measure spectral variations from the
former; 3) for wide-sense-stationary correlation-ergodic sig-
nals, the estimated autocorrelation function for each lag k
approaches the true autocorrelation value as the window
length tends to in�nity [5].
The complete RLS algorithm based on the multi-band

scheme with VFFs can be found in Table 1. The �rst part
of the algorithm (from the beginning until the evaluation
of the total estimated autocorrelation vector cM(n)) corre-
sponds to the proposed multi-band LS solution with VFFs,
and the second part of the algorithm (from the initializa-
tion of F0(n) until the end) is based on the Levinson RLS
algorithm and was derived in [10].
It should be noted that the FF adaptation technique pre-

sented in this section has some limitations. Particularly, in

practical applicationsN (j) must be a time-varying quantity
accounting for power variations of the input signal for each
band. One possible approach to tackle this problem is to
use a power-normalized form of the estimated autocorrela-
tion given in (16). Furthermore, when a priori knowledge of
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Figure 3. Plots of the nonstationarity detection

function D
(j)

M
(n), j = 1; : : : ; 4, for the signal analyzed

in Fig. 4. For all bands I(j) = 20:

the input signal is limited, choices of D
(j)

min
and D

(j)
max are a

di�cult task. To reduce the inuence of these bounds, the

following algorithm may be used to update �(j)(n):

�
(j)
(n) = �

(j)

min
+
��cos ��(j)(n)��� ��(j)max � �

(j)

min

�
(18)

where

�
(j)
(n) = arctan

�
�D

(j)

M
(n)

�n

�
: (19)

4. COMPUTER EXPERIMENTS

The test signal used in the experiments described in this
section is composed of two spatially-close low-frequency si-
nusoids (340 Hz and 740 Hz) which start when a high-
frequency sinusoid (4000 Hz) stops. (sampling rate =
10 kHz). White noise was added. The system used to �lter
the linear prediction error is a 4-channel linear-phase near-
perfect-reconstruction �lter bank designed in [11] with stop-
band attenuation of 59 db. Plots of the detection function
D
(j)

M
(n), j = 1; : : : ; 4; are depicted in Fig. 3. Note that,

ideally, there should be no spikes in the plots of D
(2)

M
(n)

and D
(3)

M
(n), but in practice, the stopband attenuation will

govern the inuence of signals in neighboring bands. Note
also that even though this inuence is observed, the peak
amplitude values are much lower than the related peaks in
the bands where these nonstationarities really occur, and
this inuence may be neutralized by proper choice of the

clipping values D
(j)

min
and D

(j)
max. In Fig. 4, from left to

right, AR spectral estimates for the system described above
through conventional LS with three di�erent FF values and
multi-band decomposition-based LS with FFFs and VFFs
are plotted at every 15-samples interval.
Careful analysis of the results displayed in Fig. 3 and

Fig. 4 enlighten the following points:

� nonstationarities are precisely detected by D
(j)

M
(n);

� the estimated high-frequency component fastly van-
ishes for the proposed VFF multi-band method;

� during the stationary parts of the input signal, a stable
response similar to that obtained with long-windowed
RLS methods is achieved at no expense of speed of
convergence with the proposed method.
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Figure 4. Time-varying AR spectral estimates ob-
tained through conventional RLS with FFFs, multi-
band decomposition-based method with FFFs (0.96,
0.92, 0.85, 0.85) and VFFs (rightmost plot).

5. CONCLUSIONS

A new AR spectrum estimation method based on the LS
criterion through multi-window analysis of the linear pre-
diction error with independent VFFs was presented. The
proposed method trades o� time resolution and frequency
resolution of the spectral analyzer along the frequency
spectrum in accordance with the frequency-localized time-
varying statistics of the analyzed signal, giving rise to es-
timates that represent the true underlying spectrum with
more �delity than conventional LS methods. A new tech-
nique for adaptation of the FF exclusively based on the
input signal was introduced and an RLS algorithm was de-
rived. Computer experiments comparing the performance
of multi-band decomposition-based (with �xed and variable
FFs) and conventional RLS methods were shown.
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A PROOF THAT POWER
COMPLEMENTARINESS OF THE

ANALYSIS BANK ENSURES A UNIFORM
RESPONSE OF THE ADAPTIVE

ALGORITHM

A proof that power complementariness of the �lter bank
used in the multi-band method is a su�cient condition for
the validity of the relation E[FM(n)] = cE[f2

M(n)] is in the
following.

Proof:

From the de�nition of the cost function, given in equations
(3){(5), we have

E[FM(n)] =

BX
j=1

E[F
(j)

M
(n)] (20)

=

BX
j=1

E

"
nX
i=1

�
�
(j)
�n�i �
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(j)

M
(i)

�2#
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=
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�
1� �
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� nX
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�
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(j)
�n�i

1

2�

Z
�

��

PfM (!)
��H(j)

(e
j!
)
��2 d!; (22)

=
1

2�

Z
�

��

PfM (!)

BX
j=1

��H(j)
(e
j!
)
��2 d!;

(23)

where PfM (!) is the power spectrum of fM(n). If the anal-
ysis bank satis�es the power complementary property, that
is,

BX
j=1

��H(j)
(e
j!
)
��2 = c; (24)

where c is a positive constant, then it can be seen from (23)
that

E[FM(n)] = cE[f
2
M(n)]: (25)

REFERENCES

[1] B. Toplis and S. Pasupathy, \Tracking Improvements
in Fast RLS Algorithms Using a Variable Forgetting
Factor," IEEE Trans. on ASSP, vol. 36, pp. 206{227,
Feb 1988.

[2] D. Slock and T. Kailath, \Fast Transversal Filters with
Data Sequence Weighting," IEEE Trans. on ASSP,
vol. 37, pp. 346{359, Mar 1989.

[3] Y. Cho, S. Kim, and E. Powers, \Time-Varying Spec-
tral Estimation Using AR Models with Variable For-
getting Factors," IEEE Trans. on Signal Processing,
vol. 39, pp. 1422{1426, Jun 1991.

[4] B. Kova�cevi�c, M. Milosavljevi�c, and M. Veinovi�c, \Ro-
bust recursive AR speech analysis," Signal Processing,
vol. 44, pp. 125{138, Jun 1995.

[5] S. Haykin, Adaptive Filter Theory. Englewood Cli�s,
N.J.: Prentice-Hall, third ed., 1996.

[6] F. Resende, K. Tokuda, and M. Kaneko, \AR Spec-
trum Estimation Based on Wavelet Representation,"
in Proc. of IEEE ISCAS, London, England, 1994.

[7] F. Resende, K. Tokuda, and M. Kaneko, \Adaptive AR
Spectral Estimation Based on Wavelet Decomposition
of the Linear Prediction Error," IEICE Trans. on Fun-

damentals of Electronics, Communications and Com-

puter Sciences, vol. E79-A, pp. 665{673, May 1996.

[8] F. Resende, K. Tokuda, and M. Kaneko, \AR Spectral
Estimation Based on Multi-Window Analysis of the
Linear Prediction Error," in Proc. of the 38th Midwest

Symposium on Circuits and Systems, Rio de Janeiro,
Brazil, 1995.

[9] F. Resende, K. Tokuda, M. Kaneko, and A. Nishihara,
\Multi-Band Decomposition of the Linear Prediction
Error Applied to Adaptive AR Spectral Estimation,"
IEICE Trans. on Fundamentals of Electronics, Com-

munications and Computer Sciences, paper to appear.

[10] P. Strobach, \Recursive Triangular Array Ladder Al-
gorithms," IEEE Trans. on Signal Processing, vol. 39,
Jan 1991.

[11] A. Soman, P. Vaidyanathan, and T. Nguyen, \Linear
Phase Paraunitary Filter Banks: Theory, Factoriza-
tions and Designs," IEEE Trans. on Signal Processing,
vol. 41, Dec 1993.


