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ABSTRACT

In the robot navigation problem, noisy sensor data

must be �ltered to obtain the best estimate of the robot

position. The discrete Kalman �lter, which usually is

used for prediction and detection of signal in commu-

nication and control problems has become a commonly

used method to reduce the e�ect of uncertainty from

the sensor data. However, due to the special domain of

robot navigation, the Kalman approach is very limit-

ed. Here we propose the use of a Iterative Total Least

Squares Filter which is solved by applying the Lanczos

bidiagonalization process. This �lter is very promising

for very large data information and from our experi-

ments we can obtain more precise accuracy than the

Kalman �lter.

1. INTRODUCTION

The discrete Kalman �lter [8], which usually is used for

prediction and detection of signal in communication

and control problems has become a commonly used

method to reduce the e�ect of uncertainty from the

sensor data. Due to the fact that most of function in

applications are non-linear, the extended Kalman �l-

ter which linearizes the function by taking a �rst order

Taylor expansion is introduced and this linear approxi-

mation is then used as the Kalman �lter equation [1, 9].

Due to the domain of robot navigation, several pro-

blems often occur when we apply either the Kalman or

the extended Kalman �lter. An underlying assumption

in any least squares estimation is that the entries in

the data matrix are error-free [2, 7] which means that

the time intervals at which measurements are taken are

exact. But in many actual applications, sampling error,

human errors, and instrument errors may preclude the

possibility of knowing the data matrix exactly. In some

cases, the errors in data matrix can be at least as great

as the measurements errors. At this moment, applying

the Kalman �lter will give very poor results. And also

the linearization process of the extended Kalman �lter

has the potential to introduce signi�cant error into the

problem [2]. The extended Kalman is not guaranteed

to be optimal or even converge because it needs a very

good initial estimate of the solution. In some cases, it

can easily fall into a local minimum when this initial

guess is poor which is the type of situation faced by

robot navigators.

In this paper, we propose a new Iterative Total

Least Squares Filter (ITLS) which does not require nu-

merous measurements to converge because the camera

images in robot navigation is a time consuming process

and take the errors in data matrix into consideration.

Recently Boley and Sutherland describe a Recursive

Total Least Squares Filter (RTLS) which is very easily

to update [2]. In some ways, that is still a time con-

suming algorithm. Here we apply the Lanczos bidiag-

onalization process which is more computationally at-

tractive to solve the total least squares problems. The

experiments indicate that this approach can achieve a

greater accuracy with promising computational cost.

The paper is organized as follows. In section 2, we

will describe the Iterative Total Least Squares (ITLS)

algorithm. We present our experimental results in sec-

tion 3. Finally we o�er some comments and remarks.

2. ITERATIVE TOTAL LEAST SQUARES

ALGORITHM

Given an over-determined system of equation Ax = b,

the TLS problem, in its simplest form, is to �nd the

smallest perturbation to A and b to make the system

of equations compatible. Speci�cally, we �nd an error

matrix E and vector r such that for some vector x

min
E;r

k(E; r)kF ; (A +E)x = b+ r:



The vector x corresponding to the optimal (E; r) is

called the TLS solution.

The most common algorithms to compute the TLS

solution are based on Singular Value Decomposition

(SVD), a computationally expensive matrix decompo-

sition [6]. A very complete survey of computational

aspects and analysis of the TLS problem is given Van

Hu�el and Vandewalle in [12]. Recently Van Hu�el [11]

presented some iterative methods based on inverse it-

eration and Chebyshev acceleration, which compute a

basis of a singular subspace associated with the small-

est singular values. Their convergence properties, the

convergence rate and the operation counts per iteration

step are analyzed that they are highly dependent on the

gap of singular values. Also some recursive TLS �lters

have been developed for application in signal process-

ing [3, 4, 15].

We now consider computing an approximate solu-

tion to the total least squares problem using the Lanc-

zos process [14]. By the TLS solution is determined

by the left singular vector vn+1 of (A; b). This leads

us to consider applying the Lanczos bidiagonalization

described in [14] to (A; b). We put

�1u1 = b; �1

�
v11
v21

�
=

�
AT

bT

�
b: (1)

and for j = 1; 2; : : :

�j+1uj+1 = (A; b)

�
v1j
v2j

�
� �juj ;

�j+1

�
v1j+1
v2j+1

�
=

�
AT

bT

�
uj � �jvj�1;

where �j+1 � 0 and �j+1 � 0 are determined so that

kuj+1k2 = kvj+1k2 = 1.

After k steps we have computed

Vk = (v1; : : : ; vk); Uk+1 = (u1; : : : ; uk+1);

and a bidiagonal matrix Bk 2 R
(k+1)�k. The matrix

form of the �rst recurrence is

(A; b)

�
V 1
k

V 2
k

�
= Uk+1Bk: (2)

How is this related to the Lanczos process on A?

We �rst note that the properties uk 2 ~Kk where ~Kk =

spanfb; (AAT )b; : : : ; (AAT )k�1bg, and UT
k Uk = I, uni-

quely determine these vectors, and hence they are iden-

tical to the vectors uk generated by the Lanczos pro-

cess applied to A. Further it holds that v1k 2 Kk where

Kk = spanfAT b; : : : ; (ATA)k�1AT bg but these vectors
will di�er from the vectors vk generated in the previous

process.
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Figure 1: Diagrams of measurement

The SVD of Bk can be computed cheaply by the

standard implicit QR algorithm [7, 13]. If Bk can be

expressed as Bk = Pk+1
kQ
T
k then from (2) we have

(A; b)

�
V 1
k

V 2
k

�
(Qkek) = !k(Uk+1Pk+1ek):

Hence with �
zk

k

�
=

�
V 1
k

V 2
k

�
Qkek;

the approximate TLS solution is given by xk = �zk=
k
2 Kk. Note that we only need the last singular vector

Qkek to compute xk, but the vectors vk need to be

saved or regenerated when xk is computed.

3. EXPERIMENTAL RESULTS

To compare the performance with the Kalman �lter

and the Recursive Total Least Squares Filter(RTLS) in

practice, we run our iterative approach of Total Least

Squares Filter for one set of experiments suggested in

[2].

In the set of experiments, we simulate a simple

robot navigation problem typical of that faced by an

actual mobile robot [1, 5, 9]. The robot has identi�ed

a single landmark in a two-dimensional environment

and knows the landmark location on a map. It does

not know its own position. It moves in a straight line

and with a known uniform velocity. Its goal is to es-

timate its own start position relative to the landmark

by measuring the visual angle between its direction of

heading and the landmark. Measurements are taken

periodically as it moves. Figure 1 gives a simple di-

agram of the problem. Assume that the landmark is

located at (0,0), that the y coordinate of the robot's

start position does not change as the robot moves and

that the robot knows what side of the landmark it is

on. To map this robot-based system to the ground co-

ordinate system, it su�ces to know only the robot's

compass heading from a kind of internal compass. We
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Figure 2: Mean deviation to actual start position

will follow the simple way described in [2] to know the

compass heading independently.

In this experiment, we assume that the y coordinate

of the robot path was negative, that robot velocity v

is 20 per unit of time and that measurements of � are

taken at unit time intervals. At any time ti, we know

that

cot(�i) =
x+ ti � v

y

where (x; y) is the robot start position and �i is the an-

gle from the robot heading to the landmark. Random

error with a uniform distribution are added to the angle

measures and a normally distributed random error to

the time measurement. We can formulate the problem

so that the data matrix, as well as the measurement

vector contained error as follows:

Ai = [1 � cot(�i)]; xi = [xT yT ]T ; bi = �ti � v;

where, at time ti, Ai is the data matrix, bi is the mea-

surement vector, and xi is the estimated state vector

consisting of the coordinates (x; y) of the robot start

position. The Kalman �lter is given an estimated start

of (0; 0). The RTLS algorithm and our approach have

no estimated start position provided. The leading col-

umn of the data matrix is scaled by 100 to reduce

the allowed errors. Here we show some results in Fig-

ure 2. The mean deviations d of the estimates from

the actual start location of (�460;�455) are compared

for four di�erent error amounts. Figure 2(a) and (b)

have uniformly distributed error in � of �2� and nor-

mally distributed error in t with standard deviation

with 0; 0:05; 0:1 and 0:5. Figure 2(c) and (d) have uni-

formly distributed error in � of �4� and normally dis-

tributed error in t with 0; 0:05; 0:1 and 0:5. Table 1

gives the mean deviation from the actual location af-

ter measurements. For all groups of experiments, the

new approach, namely iterative approach of Total Least

Squares Problems converges more quickly than RTLS

�lter which is also faster than the classical Kalman �l-

ter. Also we can see clearly that the new approach can

achieve a closer estimation to the actual location than

RTLS and Kalman �lters as well.

Table 1: Mean deviation from actual location

Error(�)Error(t) 0 0.05 0.1 0.5

�2�
Kalman 32.47 20.27 24.54 28.56

RTLS 20.24 15.90 24.81 23.75

New 20.22 13.62 21.58 20.09

�4�
Kalman 21.01 31.80 34.63 36.67

RTLS 10.11 24.97 32.13 31.39

New 8.24 18.46 29.38 26.57

From the results, we can demonstrate that in the

domain of robot navigation the ITLS �lter can provide

more accurate estimates in fewer time step than the

Kalman and RTLS �lters, especially when errors are

introduced in both the measurement vector and the

data matrix.

4. CONCLUSION

In this paper, we propose a new approach namely Iter-

ative Total Least Squares Filter by using the Lanczos

bidiagonalization process. This �lter is very suitable

for large data information with relatively few readings

and makes very few assumption about the data or the

problem solved. Compared with the classical Kalman

�lter, we take the error term of data matrix into con-

sideration and do not take care the initial guess and

guarantee the solution to be optimal without falling

into a local minimum when the initial solution is poor

which is very typical in robot navigation. We apply it

use to the robot navigation and the experiments indi-

cate this approach is a successful approach.
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