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Abstract

The coe�cients of an echo canceller with a near-
end section and a far-end section are usually updated
with the same updating scheme, such as the LMS al-
gorithm. In this paper we propose a novel scheme
for echo cancellation that is based on the minimiza-
tion of two di�erent cost functions, i.e., one for the
near-end section and a di�erent one for the far-end
section. Two approaches are addressed and only one
of them lead to a substantial improvement in per-
formance over the LMS algorithm when it is applied
to both sections of the echo canceller. The proposed
scheme is also shown to be robust to noise variations,
which is not the case for the LMS algorithm.

1. Introduction

The two most widely used algorithms for adaptive
�lters are the least mean-squares (LMS) [1] and the
recursive least-squares (RLS) [2] algorithms. These
are used to estimate the echo path in an echo canceller
structure [3], and out of the two, the LMS algorithm
is the most widely used. The LMS algorithm consists
of minimizing the square of the error. In [4], the least
mean fourth (LMF) algorithm was suggested where it
arose as a special case of the more general family of
steepest descent algorithms [2] with 2k error norms,
k being a positive integer. However, no application of
a combined LMS-LMF algorithm to echo cancellation
has been reported before.

As it is known that in non-Gaussian environments
the LMS algorithm is non-optimal. However, the
LMF algorithm enjoys better convergence than the
LMS algorithm in the non-Gaussian environments.
As a result, an adaptive algorithm behaving robustly
in Gaussian and non-Gaussian environments is re-
quired.

In this work, a new algorithm applied to long echo
cancellers with two sections, the near-end (NE) and
the far-end (FE) sections, separated by a bulk to con-
siderably reduce the number of coe�cients of the �lter

is proposed. The proposed algorithm consists of ap-
plying the LMS algorithm in the NE section of the
echo canceller and the LMF algorithm in its FE sec-
tion, and it will be henceforth called the least mean
square-fourth (LMSF) algorithm.

It is shown in this work that the LMSF algorithm
leads to a lower minimummean square error, hence re-
sults in less misadjustment, a faster convergence com-
pared to the one obtained by the LMS algorithmwhen
applied to both sections of the echo canceller [5]-[6],
and more importantly behaving robustly in Gaussian
and non-Gaussian environments.

Similar approach [7] is also used in the design of
decision feedback equalizers (DFE). Substantial im-
provement in performance is obtained through the use
of this method.

After presenting, in Section 2, the proposed cost
functions, Sections 3 and 4 deal with the respective
algorithms resulting from these cost functions. Perfor-
mance evaluation of the resulting algorithms is given
in Section 5.

2. Development of the minimization

criteria

In this work the proposed performance criteria, are
de�ned, respectively, for the NE section and the FE
section as:

JN(n) = E[e2(n)]; (1)

JF (n) = E[e4(n)]; (2)

the error is e(n) = d(n) + w(n)� y(n), where d(n) is
the desired value, y(n) is the output of the adaptive
system, and w(n) is the additive noise, Fig. 1 depicts
this clearly.

A similar approach is reported in [8], with a mod-
i�cation made to the FE section where a mixed-
controlled LMS-LMF algorithm is applied.

Both of the above cost functions, Equations (1)
and (2), are convex functions, as a result of these
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Figure 1: Block diagram of adaptive system identi�-
cation.

minimization criteria a global minimum will be ob-
tained. An adaptive process, such as the steepest de-
scent method [2], can be used to seek this point.

Two approaches are considered for the analysis of
the proposed cost functions. One would be updating
both sections of the echo canceller with the same step
size � and hence the algorithm will be called LMSF
Type I, and the other would be using two di�erent
step sizes for each section of the canceller �1 and �2,
respectively, and therefore called LMSF Type II.

Based on this motivation, the LMSF algorithm
for recursively adjusting the tap coe�cients of the
NE canceller, CN (n), and those of the FE canceller,
CF (n), is derived.

3. The LMSF Type I algorithm

For the LMSF Type I algorithm, then, the updat-
ing scheme is:

CN (n+ 1) = CN (n) + �e(n)XN (n); (3)

CF (n+ 1) = CF (n) + 2�e3(n)XF (n); (4)

where XN (n) and XF (n) are the input signals in the
NE and the FE sections of the canceller, respectively.
Su�cient condition for convergence of the algorithm
is therefore given by:

0 < � <
2

�max(A)
; (5)

where �max(A) is the largest eigenvalue of the follow-
ing matrix:

A =

�
RN 0

0 6E[w2(n)]RF

�
; (6)

where RN and RF are, respectively, the autocorre-
lation matrices of the NE and the FE sections of the
echo canceller, and E[w2(n)] is the measurement noise
power.

4. The LMSF Type II algorithm

For the LMSF Type II algorithm, the updating
scheme is expressed in the following form

CN (n+ 1) = CN (n) + �1e(n)XN (n); (7)

CF (n+ 1) = CF (n) + 2�2e
3(n)XF (n): (8)

and therefore su�cient conditions for convergence of
the algorithm are [9]-[10]:

0 < �1 <
2

N1�2
x

; (9)

and

0 < �2 <
2

6N2�2
x
E[w2(n)]

; (10)

where N1 and N2 are the lengths of the NE the FE
cancellers, respectively, and �2

x
is the signal power.

The results in (5), (9), and (10) are obtained when
the analysis for the convergence in the mean of the
LMSF algorithm is used. Table 1 summarizes main
parameters for this algorithm [9]. The �rst �max and
the second one correspond, respectively, to the conver-
gence in the mean and the mean-square of the LMSF
Type II algorithm, and �opt is the optimal value of
the step size. The ith time constant in this table is
denoted by �i.

5. Simulation results

The performance of the LMSF algorithm (Type I
& II) is compared with three other algorithms. These
are: the LMS algorithm that is based on the mini-
mization of the MSE, i.e., J1(n) = E[e2(n)], the LMF
algorithm that is based on the minimization of the
mean fourth error (MFE), i.e., J2(n) = E[e4(n)], and
the third algorithm is based on the minimization of
two functions, a MFE for the NE section of the can-
celler, i.e., JN3(n) = E[e4(n)], and a MSE for its FE
section, i.e., JF3(n) = E[e2(n)]. The latter algorithm
will be called the least mean fourth-square (LMFS)
algorithm.

The input signal is binary (xi = �1), the additive
noise is a Gaussian white noise with a variance of -30
dB with respect to unity, and the channel considered
has one zero at the origin and one pole at 0.9. Fi-
nally, the step sizes for the above stated algorithms
are chosen so that their respective convergence is the
fastest.

The convergence performance of all �ve algorithms
is illustrated in Fig. 2. The LMSF Type II algorithm
clearly outperforms the other four algorithms and pro-
vides less weight noise than the LMS algorithm. Also,
as it is observed from Fig. 2 that the worst algorithm
happens to be the LMSF Type I. This suggests that
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Figure 2: Learning curves for the �ve algorithms.

for the LMSF algorithm to perform well separate step
sizes should be used.

The close agreement between theory and experi-
ment for the convergence rate of the LMSF Type II
algorithm is depicted in Fig. 3.

The LMSF Type II algorithm converges faster than
the LMS algorithm in two respects: when the conver-
gence rates are the fastest for each algorithm, and
when both algorithms converge to the same steady
state value. The latter one is depicted in Fig. 4.

The e�ect of the noise variance on the convergence
behavior of the LMSF Type II algorithmhas also been
studied [9]. It is found that, as predicted by theory, as
long as the noise variance is close to or much greater
than the actual value the convergence of the algorithm
to the optimum solution is always guaranteed.

Since the LMSF algorithm is a hybrid algorithm,
its performance will be a�ected by the noise distribu-
tion as it is the case for the LMF algorithm [4], this
depicted in Fig. 5. As it is expected from theory,
the uniform distribution will give a lower misadjust-
ment error than its Gaussian counterpart. Also, as
can be noticed from this �gure that in both noise dis-
tributions the LMSF Type II outperforms the LMS
algorithm (even with Gaussian noise), hence the ro-
bustness of the LMSF Type II.

Finally, the LMSF Type II algorithm requires only
three more multiplications per update than the LMS
algorithm.

6. Conclusion

In conclusion, a new adaptive scheme for echo can-
cellation has been introduced. It is shown that mini-
mizing both the mean square criterion and the mean
fourth over the NE and the FE sections of the echo
canceller with di�erent step sizes, respectively, led to
superior performance over the commonly used mean
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Figure 3: Theoretical and experimental learning
curves for the LMSF Type II algorithm.

square error alone, and to other proposed algorithms
as well. Moreover, the algorithm is shown to be robust
to Gaussian and non-Gaussian environments.
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Table 1: Main parameters of the LMSF Type II algo-
rithm.
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Figure 4: Learning curves for the LMSF Type II and
the LMS algorithms with the same steady state value.
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Figure 5: E�ect of noise distribution on the conver-
gence behavior of the LMSF Type II algorithm.


