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ABSTRACT

A recursive transfer function estimation algorithm is pre-
sented and analyzed. Applications can be found in either
electric or acoustic echo cancellation. The proposed algo-
rithm is robust against burst disturbances that are caused
by detection misses of double-talk present at the output of
the echo path. A frequency-domain technique is used and a
robustness function is derived from a criterion that is valid
in the application. Analysis of the robust algorithm shows
that good performance is to be expected. The performance
of the algorithm when operated on real-life speech data in
a full duplex communication system is shown by examples.
Double-talk detection misses are shown to be well handled
by the robust algorithm; yet, convergence rate and variance
efficiency are as high as that of a non-robust least squares
algorithm.

1. INTRODUCTION

Double-talk, i.e., talkers and listeners interrupting each
other in full duplex communication, is limiting the perfor-
mance of echo cancellers. The reason for this is that the
double-talk detector (DTD, cf. Fig. 1) sometimes fails to
disconnect the adaptation algorithm. As a consequence,
a speech burst at the output of the echo path enters the
adaptation algorithm and “moves” the estimate away from
“optimum.” The algorithm has therefore be made robust
against these bursts in order to reduce this problem. A prin-
ciple of robustness, equivalent to the sign LMS algorithm,
was introduced in [1]. This algorithm has the drawback of
much slower convergence rate than a standard LMS algo-
rithm, (2, 3].

In this work, a frequency-domain algorithm is proposed
that approach the double-talk problem by introducing ro-
bustness against deviations in the distributional assump-
tions. Frequency-domain techniques fit well within the
framework of robust statistics in the echo canceller applica-
tion since a contaminated Gaussian model for the residual
echo can be adopted. The reasons for this are the following;:
a frequency transformation converts the burst of speech into
outliers, i.e. infrequently appearing large disturbances in
the output signal, which are well handled by robust statis-
tics; as a consequence of the central limit theorem, the
transformation moves the system noise distribution closer
to the Gaussian. Therefore, a Gaussian assumption of the
ongoing system noise is well-founded.

A robust M-estimator is derived from the complex con-
taminated Gaussian model by techniques from classical ro-
bust statistical theory, [4]. These techniques are adapted to
the complex parameter case of transfer function estimation.
Statistical analysis of the algorithm is made and the asymp-
totic variance of the estimate is derived for the stationary
input case.
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Figure 1. Echo canceller and model of electric echo path.
h(n) represents the linear part of the hybrid circuit that per-
forms the transition between 4-wire and 2-wire lines. D is a
pure delay. The signals are transformed into the frequency
domain where the transfer function, Hy, is recursively esti-
mated (RA).

2. PRELIMINARIES

The system h(n) is restricted to be FIR of order p and the
input, z(n), and output, y(n), are related through,

y(n) =Y hDz(n—1) +v(n), (1)
=0

where v(n) represents the disturbance. Let Y (q) be a com-
plex value denoting the windowed discrete Fourier trans-
form (DFT) at frequency k/N of a block of time-domain



data y(n), n=q...q+ N—1, ¢ =0,..., m. Transformed
variables of h(n), z(n), v(n) are analogously defined. The
frequency-domain model is then given by,

Yi(q) Hi.(¢)X1(q) + Zx(q) + Vi (q) (2)
Hy(9)Xk(q) + Vi(a),

Q

where Zx(q) represents the inherent bias after the approx-
imation. This bias is small and it decreases as the data
block size N increases, [5]. For notation of simplicity, the
frequency index k is from now on excluded. Denote a resid-
ual by Z(q),

Z(q) =Y(q) — H(g — 1)X(q). (3)

The transformed system noise is well modeled by a Gaus-
sian probability density function (pdf), f(Z(q)), and as a
consequence of the possible double-talk, the residual (after
convergence of H(g)) is modeled by a contaminated Gaus-
sian pdf7 fO(Z(Q))7

fo(Z(q)) = (1 =) f(Z(q)) +9(Z(9)), (4)

where ¢ represents the level of contamination and g(Z(q))
the pdf of double-talk. A non-recursive M-estimate of the
transfer function, H, following the principles in [4], is given
by the minimization problem,
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where r(g) is the magnitude of the residual, Z(q), Eq. (3),
and S is a scale parameter, in this case a robust estimate
of the residual standard deviation. Eq. (5) is equivalent
to a least-squares problem if the function p is quadratic.
Minimization of Eq. (5) with respect to the transfer function
gives the implicit equation,

d
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Naturally, a good estimator is found by making Eq. (5)
a maximum likelihood estimator of the transfer function
based on the statistical model, Eq. (4), i.e.,

U(r(q) ~ — In{fo(r(9))}, (7)

_0
Ir(q)
This choice results in a robust M-estimator of the transfer
function.

Calculus of variations is used to find the worst case candi-
date for fo(r(q)), [6]. A tractable monotone approximation
to the function ¥ resulting from the worst case fo(r(q)) is
the two dimensional Huber-function, [4, 6, 7],

¥(r(g)) = min{r(q),ro}, r(q) =12(9)].  (8)

The radius 7o is a fixed value that determines the level of
robustness. The robust estimate of the scale parameter, S,
is given by solving the implicit equation, [4],

r(a), _
> x(—g) =0, (9)

€ To Bo
0.001 | 2.1615 | 0.9906
0.002 | 2.0265 | 0.9835
0.005 | 1.8390 | 0.9660
0.010 | 1.6892 | 0.9424

Table 1. Numerical values of €, 7o and, Go.

where x is an even function and in this paper x{-} =
W2{.} — Bo. Bo is chosen so that, E{x(Z(q))} = 0, when
Z(q) € N{0,1},ie. Bo=1—e"0.

The relation between 7o and ¢ is determined by integra-
tion of the contaminated pdf in Eq. (4). The choice of pdf
corresponding to Eq. (8) gives,
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This expression can easily be solved numerically. Table I
shows 1o and By for some values of ¢.

3. ALGORITHMS AND ANALYSIS

In order to derive a block-recursive transfer function algo-
rithm (RA, Fig. 1) that minimizes Eq. (5), the Robbins-
Monro technique, [8], is utilized. Tracking is enabled by
introducing a forgetting factor, A € (0,1], in the resulting
algorithm. It is found that, [6],

H(m) = H(m-1) (11)

v ) GonZ(m)ys(myw (Z)

v(m) S(m)
Youp(m) = Mysup(m — 1) + | X (m)|*.
Yopt (M) = Mopt(m — 1) + | X (m)] q/'{g((zg}.

The gain factor vsus(m) is a suboptimal but a practi-
cal choice and 7opt(m) is the optimal gain factor leading
to the theoretically smallest variance of the estimate. A
non-robust least squares estimate, H rs(m), is given by a
quadratic p in Eq. (5), i.e. U is linear. In this case,
: 3 X*(m)
Hrs(m) = Hps(m-—1 —_—
rs(m) rs( )+ o)

A robust recursive algorithm for the scale parameter S(m),
can be found by the same principle as for the transfer func-
tion estimate,

Z(m). (12)

S(m) = S(m-1) (13)
+ ;g(m_l)x{ﬂi’")
Y2(m —1) S(m —1)
sa(m) = yalm— 1)+ 2Ly

S(m)”~ " S(m)

The asymptotic variance of the estimate, Eq. (11), can
be derived for the case of A = 1 and Gaussian system noise.
The asymptotic relative efficiency (ARE), compared to the
Cramér-Rao bound is defined as,

= &, i = opt, sub. (14)
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Figure 2. Asymptotic relative (to the CRB) efficiencies
of algorithms in Gaussian noise. The robust algorithm,
Eq. (11), with suboptimal gain factor (solid line). Result
with optimal gain factor (dotted line).
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Figure 3. (a) True impulse response of the hybrid circuit;
(b) Corresponding amplitude function.

It is found that, [6], the ARE values of Eq. (11) are,

[1—e™"8 +/aro (1 — @(v2r0)))?

ARE, = , 15
pt [1 — e_rg] ( )
ARE,, = (16)
21— &8 + /aro(1 — ®(v/2r0))) — 1]
[1—e7%) ’
2
where ®(t) = \/%fioo e~ = dr. Figure 2 shows the effi-

ciencies (optimal and suboptimal ), versus the choice of
radius, 70. The loss in efficiency when using the suboptimal
gain parameter, vsus(m), of Eq. (11) instead of the optimal
Yopt (M) is insignificant if 7o > 1.4.

4. PERFORMANCE

Performance of the robust and non-robust algorithms is
presented by estimates of the amplitude function and the
misalignment. The misalignment, M (m), is defined as,
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Figure 4. (a) Echo and near-end burst at approximately
1250 ms; (b) Misalignment. The non-robust algorithm
(solid line). The robust algorithm (dashed-dotted line).
The input signal is white noise in this simulation.
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M(m) = —10log;o(

). (17)

In the following examples the system shown in Fig. 3 is
used. The attenuation of the hybrid circuit is in this case
20 dB. The transform block length of the algorithm, N, is
256 and ¢ is chosen to 0.002. L, the downsample factor in
Fig. 1, is 128.

In the first example, Fig. 4, the input signal is white
Gaussian noise and the SNR (input signal to system noise)
is 34 dB. A burst of noise (12.5 ms duration) is present at
about 1250 ms. A double-talk detector is not implemented
in this example. It is shown in Fig. 4b that both algorithms
have approximately equal convergence rate. The non-robust
algorithm is severely affected by the burst while the robust
experiences only minor degradation due to the burst.

The second example shows the performance for speech
signals. Figures 5a, b show the data used where the aver-
age SNR is 34 dB. A DTD switches off the adaptation when
near-end talk occurs. It can be seen in Fig. 5c that the mis-
alignment of the non-robust algorithm (solid line) decreases
rapidly when the DTD misses double-talk starting around 7
s. Near-end speech-bursts in this example are clearly visible
in Fig. 5b. The estimated amplitude function at 7.08 s (cf.
Fig. 5) is shown in Fig. 6. The non-robust estimate deviates
considerably from the true amplitude function whereas the
robust estimate is practically unaffected by the burst dis-
turbances.
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Figure 5. (a) Far-end speech; (b) Near-end speech and echo;
(c) Misalignment. The non-robust algorithm (solid line).
The robust algorithm (dashed-dotted line).

5. DISCUSSION

The application for the suggested algorithm is echo can-
celling where severe burst disturbances can occur. Figure 5
shows the superiority of the robust estimator in double-talk
situations.

The block processing contributes to the success of the
robust algorithm since bursts are transformed into less fre-
quently occurring outliers and the transformed background
noise is well approximated as Gaussian due to the central
limit theorem. Thus, the residual obey the e-contaminated
Gaussian distribution which form the basis for the robust
approach. It is shown that the complex Huber function,
Eq. (8), is well-suited for the problem and the level of con-
tamination, ¢ Eq. (4), can be assumed small in the robust
algorithm, Eq. (11). The choice of small € makes 7o large,
which means that the asymptotic variance of the estimate
approaches the minimum possible, Eq. (15), Fig. 2. In prac-
tice, it is possible to choose € small, resulting in high effi-
ciency of the robust algorithm when there are no outliers
present.

The robust algorithm is suitable in both electric and
acoustic echo cancelling. By employing a robust algorithm
a less complex double-talk detector can be used in the echo
canceller without degraded performance. This is an advan-
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Figure 6. Estimated amplitude function (solid lines). True
amplitude function (dashed lines). Estimates at 7.08 s, cf.
Fig. 5. (a) Non-robust algorithm; (b) Robust algorithm.

tage, since it is difficult to design a low complexity high
performance DTD, especially in acoustic applications. It is
also possible to use of an algorithm setting (\) that leads
to faster convergence without the risk of divergence during
double-talk.

The ideas presented in this paper can of course be used
with general subband echo canceller algorithms where the
number of coefficients in the adaptive subband filter is larger
than one.
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