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ABSTRACT

In this paper, an analysis of a delayless subband adap-
tive digital �lter (ADF) structure is presented. In this
structure adaptive weights in each subband are com-
puted by the LMS algorithm and then transformed into
those in fullband by the Hadamard transform. The
conventional subband ADF has transmission delay and
aliasing e�ects associated with the �lter bank. How-
ever in this manner such defects are avoided while re-
taining the computational and convergence speed ad-
vantages of subband decomposition. In addition the
overall transfer function of the novel type of subband
ADF is strictly equivalent to that of the Wiener �lter
for the fullband ADF. Also, a characteristic equation
is derived to discuss stability of the adaptation algo-
rithm. Some numerical results show good performance
of this scheme.

1. INTRODUCTION

Recently, there have been many works concerning sub-
band adaptive digital �lters (ADF) [1][2]. Due to the
improvement of the condition number of the covariance
matrices of the input signals, the subband ADF with
LMS adaptive algorithm gives better convergence prop-
erty over the fullband ADF [2]. However, it is shown
in [1][2] that the overall transfer function of the con-
ventional subband ADF is that of the optimal Wiener
�lter for the fullband ADF multiplied by the �lter bank
delay term. This is a serious defect especially when the
delay is large for good lowpass and highpass �lters.
A delayless subband ADF has been proposed by Mor-

gan and Thi [3]. They have presented some qualitative
analysis for both the open and closed loop schemes.
Their idea is that the tap coe�cients in subbands are
transformed into an equivalent set of fullband ones us-
ing the frequency sampling method, that is, DFT and
inverse DFT. Transmission delay is avoided since the
signal for cancelling the desired signal is computed by
the fullband �lter. With the closed loop scheme the
fullband Wiener solution is a stationary point of the
LMS type algorithm for adapting the tap coe�cients
in subbands. However, for maximally decimated �lter
bank, since the corresponding transformation matrix is
singular its range space may not contain the above so-
lution. If not, it is not so easy to calculate stationary

points analytically.
In this paper we analyze the closed loop scheme in

Figure 1 more quantitatively and propose a new adap-
tation algorithm. First we describe the delayless sub-
band ADF scheme proposed in [3] and propose a mod-
i�ed transformation based on the frequency sampling
method to avoid the above defect. In the case of 2-
band, this coincides with the original method in [3] for
even taps. Using the approach in [4] it is found that
a stationary point in fullband is not still changed and
the overall transfer function of the delayless subband
ADF is strictly equal to that of the fullband Wiener
�lter. Hence aliasing e�ects characteristic of the con-
ventional subband ADF are eliminated independently
of the frequency response of nonideal analysis �lters.
It is an additional advantage that computational com-
plexity for the proposed transformation is less than for
the frequency sampling method. Also, we briey de-
scribe stability of the adaptation algorithm by deriving
a characteristic equation. For general 2p-band case,
repeating the transformation in the 2-band case recur-
sively, we note that subband taps are transformed into
fullband ones by the Hadamard transform. Some sim-
ulation results show that the proposed method gives
better performance than the original one.

2. 2-BAND DELAYLESS SUBBAND ADF

We consider the 2-band delayless subband ADF with
the closed loop structure in Figure 1, where Hi(z) and
Gi(z) (i = 0; 1) are analysis and subband adaptive �l-
ters, respectively, and x(n) and d(n) are stationary in-
put and desired signals with zero mean, respectively.
For simplicity each signal is assumed real. x(n) and
the error signal e(n) are decomposed into sets of sub-
band signals using lowpass and highpass �lters, and in
each subband the signals are decimated by a factor 2.
Here we de�ne the subband weight and input vectors
of dimension N=2 as

gi(n) = [gi(0) gi(1) . . . gi(
N

2
� 1)]T jat sub�time n; (1)

xi(n) = [xi(n) xi(n� 1) . . . xi(n �
N

2
+ 1)]T ; (2)

respectively, where N is the number of the fullband
taps. Then the vector gi(n) is updated using the LMS
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Figure 1. 2-band delayless subband ADF

type algorithm

gi(n+ 1) = gi(n) + �ixi(n)ei(n) (3)

where �i (0 < �i � 1) is the adaptive step size.
On the other hand, the equivalence between the sub-

band �lters Gi(z) and the fullband one W (z) is given
by

W (z) =

�
G0(z

2) (lowpass band)
G1(z

2) (highpass band)
(4)

in the frequency domain [2]. Hence, using the fre-
quency sampling method we obtain the transformation
of the subband taps into the fullband one w(k) (k =
0;1; . . . ; N � 1) as

w(k) =
1

N

N�1X
m=0

W (ej
2�

N
m)ej

2�

N
km (5)

=

8>>>>><
>>>>>:

1

2
fg0(

k

2
) + g1(

k

2
)g (k : even)

1

N

N

2
�1X

l=0

N

4
�1X

m=�N

4
+1

fg0(l) � g1(l)ge
�j 2�

N
(2l�k)m

(k : odd)

: (6)

It can be easily shown that the fullband Wiener so-
lution satis�es E[xi(n)ei(n)] = 0 (i = 0; 1), which
makes the adaptation algorithm stationary. However
we found that since the corresponding transformation
matrix in (6) is singular, this solution may not belong
to its range space. If not, the tap coe�cients never
converge to the solution and then the error signal is
not minimum in the least mean square sense. To avoid
this defect we propose a nonsingular transformation

w(k) =
1

2
fg0([

k

2
]) + (�1)kg1([

k

2
])g (7)

where [x] denotes the largest integer not exceeding x.
This is based on the above transformation and coin-
cides with (6) for even k. Then a stationary point in
fullband of the adaptation algorithm is the same as the
Wiener solution. In addition, computational complex-
ity is signi�cantly reduced to a total of N log 2 multipli-
cations per subband input sample compared to a total
of about 2N logN for the original case.
Next, we investigate the overall transfer function of

the delayless subband ADF in stationary state. In the

frequency domain, from (7) the fullband �lter is related
to the subband one as

W (z) =
1

2
[(1 + z�1)G0(z

2) + (1� z�1)G1(z
2)]: (8)

This is consistent with (4) only for ! = 0; �. On the
other hand, e(n) is stationary since x(n) and d(n) are
stationary. From the facts about stationary processes
in [4], the cross spectral density between ei(n) and
xi(n) Seixi(z) is expressed as

Se
i
x
i
(z) =

1

2
[jHi(z

1

2 )j2Sex(z
1

2 ) + jHi(�z
1

2 )j2Sex(�z
1

2 )]

(9)
where Sex(z) is the cross spectral density between e(n)
and x(n) given by

Sex(z) = Sdx(z)�W (z)Sxx(z): (10)

Also, Sxx(z) and Sdx(z) are the spectral density of x(n)
and the cross spectral density between d(n) and x(n),
respectively. Substituting (10) into (9) and solving the
linear equations Seixi(z) = 0 for i = 0; 1, which is
equivalent to E[xi(n� k)ei(n)] for all k, we obtain the
optimal subband �lters

G0(z
2) =

z

2
[(1+z�1)

Sdx(z)

Sxx(z)
�(1�z�1)

Sdx(�z)

Sxx(�z)
]; (11)

G1(z
2) =

z

2
[(1+z�1)

Sdx(�z)

Sxx(�z)
�(1�z�1)

Sdx(z)

Sxx(z)
]: (12)

Substituting (11) and (12) into (8) again, we �nally
get W (z) = Sdx(z)=Sxx(z). This is just the Wiener
�lter for the fullband ADF. Hence, aliasing e�ects are
eliminated independently of the frequency response of
nonideal analysis �lters and the proposed delayless sub-
band ADF is equivalent to the fullband ADF without
transmission delay which is a disadvantage of the con-
ventional subband ADF.

3. STABILITY OF ADAPTATION
ALGORITHM

Here we examine the convergence condition of the LMS
algorithm (3). De�ning the learning (at time n) and op-
timal weight vectors of dimension N as w([n=2]) (the
argument n=2 is due to decimation) and wopt, respec-
tively, we have the expression of the error signal as

e(n) = [wopt �w([
n

2
])]Tx(n) + v(n) (13)

where x(n) is the input vector of dimension N ex-
pressed as

x(n) = [x(n) x(n � 1) . . . x(n�N + 1)]T (14)

and the additive noise v(n) is uncorrelated with
x(n). The subband signals are given by xi(n) =P

m hi(m)x(2n�m) and a similar expression for ei(n).



Assuming that ~y and �y denote the even and odd tap
vectors of y, respectively, we reexpress (3) as

gi(n+ 1) =gi(n) + �
X
lm

hi(l)hi(m)~x(2n � l)

� [wopt �w(n � [
m

2
])]Tx(2n �m)

+ �
X
lm

hi(l)hi(m)~x(2n � l)v(2n�m) (15)

where � := �0 = �1. Using (7), we obtain

~w(n) =
1

2
[g0(n) + g1(n)]; (16)

�w(n) =
1

2
[g0(n)� g1(n)]: (17)

De�ning the weight-error vector as �(n) = w(n)�wopt

and using (15), (16), and (17), we have

~�(n + 1) =~�(n)� �
X
lm

a0(l;m)~x(2n� l)

� xT (2n�m)�(n � [
m

2
])

+ �
X
lm

a0(l;m)~x(2n� l)v(2n�m) (18)

where ai(l; m) = 1=2fh0(l)h0(m) + (�1)ih1(l)h1(m)g
(i = 0; 1). Assuming that the input is statistically in-
dependent of the weight-error, it follows that [5]

E[~�(n+ 1)] =E[~�(n)]� �
X
lm

a0(l;m)

� f ~RlmE[~�(n� [
m

2
])] + �RlmE[��(n � [

m

2
])]g (19)

where ~Rlm = E[~x(2n � l)~xT (2n � m)] and �Rlm =
E[~x(2n� l)�xT (2n�m)]. A similar equation is derived
for E[��(n)]. Combining these updating equations, �-
nally a characteristic equation is given by�����(z � 1)I + �

X
lm

�
a0(l;m) ~Rlm a0(l;m) �Rlm

a1(l;m) ~Rlm a1(l;m) �Rlm

�
z�[

m

2
]

�����
= 0: (20)

If all the roots of (20) are inside the unit circle, the tap
coe�cients converge. The stability of the adaptation
algorithm depends on the frequency response of anal-
ysis �lters and the autocorrelation of the input signal.
However the order of the equation (20) is so large that
it is not so easy to �nd the stabilizing parameter �
analytically.

4. MULTI-BAND DELAYLESS SUBBAND
ADF

We consider a 4-band delayless subband ADF with tree
structure. Here we de�ne the subband taps in the i-
th band as gi(k) (i = 0; 1; 2; 3; k = 0; 1; . . . ; N=4 �

1). Reducing this scheme to the 2-band one, as in the
Section 2 the subband taps are transformed as

wi(k) =
1

2
fg2i([

k

2
]) + (�1)kg2i+1([

k

2
])g (21)

for i = 0; 1, k = 0; 1; . . . ; N=2 � 1 where w0(k) and
w1(k) are the taps in the lowpass and highpass bands,
respectively. Next, we transform wi(k) into the full-
band taps w(k) using

w(k) =
1

2
fw0([

k

2
]) + (�1)kw1([

k

2
])g (22)

for k = 0; 1; . . . ; N � 1. From (21) and (22), the trans-
formation of the subband taps into the fullband ones is
expressed as

2
64
w(4k)
w(4k + 1)
w(4k + 2)
w(4k + 3)

3
75 =

1

4

2
64

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

3
75
2
64
g0(k)
g2(k)
g1(k)
g3(k)

3
75

(23)
for k = 0; 1; . . . ; N=4 � 1. We note that the matrix
at the right-hand side of (23) is the 4 � 4 Hadamard
matrix and the order of band in the subband tap vector
is changed appropriately.
In an M -band case where M = 2p (p = 1; 2; . . .),

repeating the above operation recursively, the subband
taps are transformed into the fullband one as

wf (k) =
1

M
H(p)ws(k) (24)

for k = 0; 1; . . . ; N=M � 1 where

wf (k) = [w(Mk) w(Mk + 1) . . . w(Mk +M � 1)]T ;
(25)

ws(k) =[ g0(k) gM=2(k) gM=4(k) g3M=4(k) gM=8(k)

g5M=8(k) g3M=8(k) g7M=8(k) . . . gM�2(k) g1(k)

gM=2+1(k) gM=4+1(k) g3M=4+1(k) . . . gM�1(k) ]
T ;(26)

H(p+ 1) =

�
H(p) H(p)
H(p) �H(p)

�
; H(1) =

�
1 1
1 �1

�
:

(27)
Changing the order of band in the subband tap vector
appropriately, we can transform the tap coe�cients in
subbands into those in fullband using the Hadamard
transform. The transformation requires M logM mul-
tiplications for each block and a total of N logM per
subband input sample. Since M � N generally, com-
putational complexity in the proposed method is less
than in the frequency sampling method.

5. SIMULATION RESULTS

We consider system identi�cation problems and assume
that the unknown system to be identi�ed is a 15th order
FIR �lter and is corrupted by a white noise with SNR =
40 dB. The analysis �lter bank is the 2-band CQF bank
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Figure 2. Learning curve of error signal (I)

Table 1. Averaged error variance after conver-
gence for each unknown system (dB)

proposed original conventional

I �39:0 �39:0 �37:7
II �38:8 �33:4 �33:6

with 16 taps in [6] and the input signal is generated by
AR(1) with coe�cient 0.9.

Figure 2 shows the learning curves of the error sig-
nal in the proposed method (by solid line) and the fre-
quency sampling method (by dashed line). From this
�gure and the upper row of Table 1, which shows the
averaged error variances after convergence in the con-
ventional subband �ltering method as well as in the
above two methods, both of the delayless methods have
better performance. Moreover in these methods the un-
known system is almost completely identi�ed and then
there are few aliasing e�ects. However, the curve in the
proposed method converges somewhat slower since in
the frequency domain (8) represents the true fullband
�lter less equivalently than (4).

For another unknown system, the results are shown
in Figure 3 and the lower row of Table 1. Consequently
the proposed method has the best performance. How-
ever the frequency sampling method shows nearly equal
performance to the conventional one. The di�erence
arises since the fullband Wiener solution does not be-
long to the range space of the transformation matrix
corresponding to (6). In the proposed method the un-
known system is almost completely identi�ed in this
case as well. In addition, it is straightforward to cal-
culate the theoretical values of the tap coe�cients in
subbands, and these values are approximately equal to
the experimental ones, which are averaged after con-
vergence.
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Figure 3. Learning curve of error signal (II)

6. CONCLUSION

A delayless type of subband ADF has been ana-
lyzed quantitatively and a nonsingular transformation
of adaptive tap coe�cients has been proposed. This
scheme avoids the defects of the conventional type,
aliasing e�ects as well as transmission delay. The fre-
quency response of nonideal analysis �lters has an e�ect
only on convergence property. Moreover simulation re-
sults show advantages of this scheme. Whatever the
desired signal, it can be completely cancelled, while
in the frequency sampling method it is possible only if
the fullband Wiener solution belongs to the range space
of the corresponding transformation. Now we need to
examine the convergence condition of the adaptation
algorithm more, which is briey stated in Section 3.
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