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ABSTRACT

The performance of two minimal QR-LSL algorithms in
a low precision environment is investigated. For both
algorithms backward consistency and backward stability
become guaranteed under simple numerical conventions.
They present stable behavior even when excited with ill
conditioned signals such as predictable signals. Since the
problem of ensuring numerical stability is solved for these
algorithms, an investigation about their accuracy is in
place. By simulating a channel equalizer con�guration it
is shown that, for small mantissa wordlengths and forget-
ting factors � not too close to 1, the a priori algorithm
performs better due to its dispensing with passive rota-
tions. For forgetting factors very close to one and small
wordlengths, both algorithms are sensitive to the accuracy
of some well-identi�ed computations. They are compared
to an LSL algorithm, based on a priori prediction errors,
whose good performance in limited precision environments
is known.

1. INTRODUCTION

Recursive Least Squares (RLS) algorithms are of interest
for a variety of signal processing and control applications
due to their robust convergence properties and consistent
parameter estimates. Classical RLS algorithms have a nu-
merical complexity of O(M2), where M is the order of the
�ltering problem, while in fast versions complexity is re-
duced to O(M) by using the sequential nature of input
data. Unfortunately, many of the fast RLS algorithms are
plagued by numerical instability problems. Only recently
the suspicion that fast RLS algorithm are numerically un-
stable has been dispelled [1]. This was achieved with the
introduction of concepts such as minimality, backward con-
sistency and backward stability, which have been used to
establish su�cient conditions for stable propagation of nu-
merical errors. To the best knowledge of the authors, the
only known algorithms which are rigorously proven to be
backward stable are two hybrid QR-LSL (Least Squares
Lattice) algorithms, one based on a posteriori and the other
based on a priori prediction errors. A compact description
of the a priori QR-LSL algorithm [7, 8] is given in Tables
I and II, while the a posteriori QR-LSL is described in [1]
and [2].
These algorithms di�er by the kind of prediction er-

rors they compute, and have some characteristics that are
worth mentioning:
- They are based on Givens rotations and are minimal

in a system theory sense;
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- Backward consistency and backward stability become
guaranteed under simple numerical conventions;
- Contrasting with the a posteriori QR-LSL algorithm,

in the a priori version backward consistency is guaranteed
without the constraint of passive rotations in the recursive
lattice section;
- They present stable behavior even when excited with

ill conditioned signals such as predictable signals;
- The a priori version presents some degree of parallelism

that can be exploited for fast implementations.
For these two algorithms the problem of ensuring nu-

merical stability is completely solved. Thus, due to their
numerical robustness, results about their accuracy are of
great interest. Simulations in [3] show that the a posteriori
QR-LSL algorithm gives the best accuracy among numer-
ous other algorithms. The a priori QR-LSL algorithm and
the LSL algorithm of [4], based on a priori prediction er-
rors, have not been considered in [3]. The latter algorithm
is known to diverge in adverse situations and conditions
that guarantee its backward stability are not known. De-
spite this, the algorithm produces accurate results even in
low precision environments. Therefore, to further inves-
tigate this question we made some comparisons between
the a posteriori and a priori QR-LSL algorithms and the a
priori error-feedback LSL algorithm of [4]. We performed
several simulations to investigate the inuence of the man-
tissa wordlength, the order and the forgetting factor on the
performance of the mentioned algorithms.

2. IMPLEMENTATION ISSUES

In this section, based on the methodology introduced in [1],
we address some properties and implementation issues that
determine the numerical behavior of the algorithm given in
Table II.
The prediction section of the RLS algorithm can be de-

scribed by a non-linear system

�(n+ 1) = Tf�(n); u(n+ 1)g ; (1)

where �(n) is the state vector that stores all the variables
necessary to propagate the LS solution, and u(n + 1) is
the input data sequence. Considering the a priori QR-LSL
algorithm in Table II, it follows that the prediction section
can be described by (1) through

�(n) =
h
q
fT

M (n); �
f=2

M (n);  
T

M
(n)

iT
; (2)

where qfM (n) = [qf
i�1

], �
f=2

M (n) and  
M
(n) = [ 

i�1(n)],
for 1 � i � M , are respectively the column vector of the
transformed input data (forward prediction), the square
root of the forward prediction error energy and the column
vector of the normalized a priori backward prediction error.
Since this state vector has the dimension 2M +1, M being



the order of the prediction problem, the QR-LSL a priori
algorithm is minimal [1].

The sets Se(n) and Sf(n) are the sets of all states �(n)
reachable at time n using respectively exact and �nite pre-
cision arithmetic. We can show, by analogy to [1], that the
set Se(n) consists of all states satisfying

a) �
f=2

M (n) > 0 , j�i(n)j < �=2,

b) k 
M
(n)k <1 ,

���bi (n)�� < �=2 , 1 � �1M <1,

for 1 � i � M . To assure that Sf(n) � Se(n), it is only
necessary to guarantee that, regardless of numerical errors,
conditions (a) and (b) are satis�ed. Condition (a) can be

easily satis�ed since �
f=2

M (n) is computed as a norm of a
two element vector which is nonzero in case of persistent

excitation. The inequality k 
M
(n)k < 1 turns out to be

automatically satis�ed when using any usual �nite preci-

sion arithmetic. No constraints are imposed to qfM(n) and

 
M
(n), thus the rotations �bi (n) and �i(n) which prop-

agate these variables do not need to be passive in �nite
precision. Therefore, it is possible to use rounding in all
operations of the proposed algorithm and guarantee back-
ward stability, which is not the case of the algorithm de-
scribed in [2]. By the use of rounding, the accumulation
of bias, which otherwise results with passive rotations, is
reduced.
The essential di�erence between the a priori and a pos-

teriori QR-LSL algorithms is the type of prediction error
used. Here the column vector of the normalized a poste-

riori backward prediction error is represented as bM (n) =

[bi�1(n)], for 1 � i � M . As already shown, one conse-
quence of using a priori normalized prediction errors is that
the stability domain of the proposed algorithm is open in
what concerns these errors. More precisely, the reachable
ranges for the normalized a posteriori and a priori errors

are respectively 0 � kbM(n)k< 1 and 0 � k 
M
(n)k<1.

Therefore, one might expect the normalized a priori errors

 
i�1(n) to be greater than the a posteriori errors bi�1(n),

implying smaller relative errors in the numerical represen-

tation of  
i�1(n) and, consequently, resulting in better ac-

curacy of the a priori algorithm. For stationary persistent
excitations, � close to one and for large n, the following ap-
proximations are valid for 1 � i �M (see the appendix):

E[jbi�1(n)j
2] � �

i�1(1� �); (3)

E[j 
i�1(n)j

2] � �
�i(1� �); (4)

E[i(n)] � �i; (5)

where E[:] represents the expectation operator. Since

E[jbi�1(n)j] � 0 and E[j 
i�1(n)j] � 0 for stationary sig-

nals, both the a posteriori and the a priori backward pre-
diction errors tend to assume small values for � slightly less
than one. In fact, they make little use of their reachable

ranges 0 � kbM(n)k < 1 and 0 � k 
M
(n)k <1. Anyway,

as the order M increases and � decreases, the variance of
the a priori backward prediction error increases more than
the variance of the corresponding a posteriori error.
It is also worth noting that (3), (4) and (5) indicate that

the precision in step 1, the angle �b solving part, may be
specially important when �1=2 is close to one. To compute
the norm 

�1=2

i
(n) = (j

�1=2

i�1
(n)j2 + j � i�1(n)j

2)1=2 using a
general purpose computer or a signal processor, a number

close to one, j�1=2

i�1
(n)j2, is to be added to a number close

to zero, j � i�1(n)j
2. This suggests that the accuracy of this

computation is sensitive to the mantissa wordlength. Some
simulation results in the next section con�rm this conjec-
ture. Finally, it must be observed that the a posteriori
QR-LSL algorithm presents almost the same problem in
the corresponding angle �b solving part. There, the norm


1=2

i�1
(n) = (j

1=2

i
(n)j2 + j�bi�1(n)j

2)1=2 is computed.

To close this section, it should be stressed that backward
consistency is not per se wordlength dependent. However,
the accuracy of the computed signals and variables is ob-
viously a�ected by the wordlength. Simulation results [3]
show that, in a low-precision environment, the a posteriori
QR-LSL algorithm gives the best results among numer-
ous other known RLS algorithms. In the next section we
present some simulation results that show the performance
of the a priori and a posteriori QR-LSL algorithms.

3. SIMULATION RESULTS

We considered an adaptive channel equalizer in the same
con�guration and with the same data channel used in [6,
Chapters 9 and 13]. The data channel has a raised co-
sine unit pulse response with only three non zero samples:
h(n) = [1 + cos(2�(n � 1)=W )]=2 for n = 0; 1; 2. The pa-
rameterW controls the amount of intersymbol interference
and the eigenvalue spread of the correlation matrix at the
equalizer input. We consideredW = 3:5 which corresponds
to an eigenvalue spread of the equalizer input correlation
matrix of approximately 47. The channel was fed with a
polar (�1) pseudorandom sequence, and a delayed version
of the input sequence was used as reference signal for the
�ltering algorithm. Zero mean gaussian noise was added
at the channel output resulting in an SNR of 30dB at the
equalizer input.
Using this con�guration we measured the mean square

a priori estimation error for several mantissa wordlengths,
several values of �1=2 and several equalization orders M .
The results for two values of �1=2 are shown in Figure 1.
The exponent wordlength was �xed in 8 bits and it was also
supposed that a multiply-accumulator machine similar to
a commercial signal processor was available. To prevent
the results from being distorted by initialization e�ects,
we discarded the output of the �rst 5000 iterations. The
mean squared a priori estimation error was then averaged
in time during 5000 iterations. The two QR-LSL algo-
rithms use �1=2 in their computations. Therefore, �1=2 was
always chosen to be exactly represented by the lower man-
tissa wordlength used in a set of measurements. The cor-
responding value of � used in the a priori error-feedback
LSL algorithm was obtained rounding the square of the
quantized �1=2 to the lower mantissa precision used in a
set of measurements.
Observing the plots in Figure 1 one immediately iden-

ti�es two ranges of mantissa wordlengths: one where the
MSE is insensitive to mantissa wordlength variations and
the other where the performance of the algorithms suf-
fers a degradation. For �xed � and �xed order M , in the
�rst wordlength range the measured MSE is very close to
the corresponding expected value (MSEo). This behavior
suggests the de�nition of a minimal mantissa wordlength
wmin, above which appropriate performance occurs. It
may be de�ned as the minimal number of bits that en-
sure a deviation from MSEo lower than a threshold level
of 0:5 dB. The actual threshold level is not very important
as long as it is the same for all comparisons. Here, wmin

is useful only in describing qualitatively the behavior of
the QR-LSL algorithms. Generally, wmin increases with �



and with M . This behavior, illustrated by Figure 1, was
observed for several �lter orders and several values of �1=2.
Figure 1 clearly shows that, for short mantissa word-

lengths, the a priori error-feedback LSL algorithm per-
forms better than the QR-LSL algorithms. However, it
should be remembered that the better accuracy is achieved
at the expense of stability, not guaranteed for the former
algorithm.
Now, considering only the QR-LSL algorithms, some

comments about their behavior are in place. Figures 1.a-b
illustrate the typical performance observed for moderate
values of �1=2, i. e. not so close to one. Speci�cally for the
simulation results in Figure 1, moderate values of �1=2 are
understood as those lower than 1 � 5=256 = 0:98046875.
The a priori QR-LSL algorithm shows better performance
for mantissa wordlengths lower than wmin. For a �xed
wordlength the performance di�erence increases with in-
creasing order M and decreasing �, as long as �1=2 is not
very close to 1.
Figures 1.c-d illustrate the typical performance observed

for values of �1=2 close to one. For the displayed simulation
results, this implies values of �1=2 greater than 0:98046875.
In this case the minimal wordlength wmin is better de-
�ned and both algorithms show a pronounced performance
degradation for mantissa wordlengths lower than wmin.
The degradation can be so strong as to preclude the use
of either algorithm. Despite this observation, the a poste-
riori algorithm performs better. Our attempts to explain
this degradation revealed that computations done in the
�b angle solving part (�rst line of equation in step 1 of Ta-
ble II or its equivalent in the a posteriori algorithm) were
the primary source of error. To stress this, Figures 1.c-d
include simulation results where only the square root argu-
ments in the �b angle solving part were represented using
double precision mantissa wordlengths. For all other vari-
ables single precision was used. As shown in Figures 1.c-
d, for short wordlengths and �1=2 close to one, there are
signi�cant performance improvements for both algorithms
which show similar behavior in this case. For moderate
values of �1=2, increasing the mantissa wordlength as de-
scribed does not cause any signi�cant improvement. The
displayed results also indicate that the a priori algorithm
is more sensitive to the computational accuracy of the �b

angle solving part.
In order to explain how the passivity constraint may

a�ect the performance of the QR-LSL algorithms, we sim-
ulated the a priori algorithm with passive rotations in the
recursive lattice section. In this case, Figure 1.a-b shows
that the two algorithms have almost the same performance
for moderate values of �1=2. Thus, the a priori QR-LSL
algorithm shows better performance because passive rota-
tions are not needed. In fact, the passivity constraint de-
grades performance only for mantissa wordlengths smaller
than wmin and moderate values of �1=2. As displayed in
Figures 1.c-d, for �1=2 very close to one the e�ect of passive
rotations is not signi�cant, even for mantissa wordlengths
lower than wmin.

4. CONCLUDING REMARKS

The performance of the a priori and a posteriori QR-LSL
algorithms was compared and it results that, for small
mantissa wordlengths and forgetting factors not too close
to 1, the a priori QR-LSL algorithm performs better,
the reason being that passive rotations are not necessary.
Moreover, for small wordlengths and forgetting factors very
close to 1, the overall accuracy of both QR-LSL algorithms

is specially sensitive to the accuracy of the �b angle solving
part. The comparison of the two QR-LSL algorithms with
the a priori error feedback LSL algorithm shows that, for
low mantissa wordlengths, there is some margin for accu-
racy improvements in both QR-LSL algorithms. Finally,
it should be emphasized that both QR-LSL algorithms are
backward stable and present stable behavior even when
excited with ill conditioned signals such as predictable sig-
nals.

APPENDIX

To show that the approximations (3), (4) and (5) are valid
for stationary signals, n ! 1 and � � 1, we use the
fact that the conversion factor i(n) can be expressed as

i(n) = �i�bi (n)�
�f

i
(n). Therefore

E [i(n)] = �
i
E
�
�
b

i (n)�
�f

i
(n)

�
: (6)

Since �bi (n) =
P

n

`=0
�n�`jebi(`)j

2, with ebi(`) being the back-
ward prediction error of order i, the above becomes

E [i(n)] = �
i

nX
`=0

�
n�`

E
�
je
b

i (`)j
2
�
�f

i
(n)

�
: (7)

Employing the averaging principle [5], which is valid for
n!1 and � close to one, we obtain

E
�
je
b

i(`)j
2
�
�f

i
(n)

�
� E

�
je
b

i (`)j
2
�
E
�
�
�f

i
(n)

�
: (8)

Considering now �
f

i
(n) =

P
n

�=0
�n��je

f

i
(�)j2, with e

f

i
(�)

being the forward prediction error of order i, and at time

�, 0 � � � n, and E
�
jef
i
(�)j2

�
� E

�
jebi(`)j

2
�
, which is

valid for stationary signals, it follows readily from (7) and
(8) that

E
�
�
b

i (n)�
�f

i
(n)

�
�

nX
`=0

�
n�`(

nX
�=0

�
n��)�1 = 1: (9)

The approximations (5) and (3) result from substituting

(9) respectively into (6) and from j�bi�1(n)j
2 = i�1(n) �

i(n). Applying the expectation operator on j 
i�1(n)j

2 =

�1

i
(n)��1

i�1
(n) and with the same arguments used in the

derivation of (3), the approximation (4) follows.
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Table I - Variables

� - forgetting factor;

u(n) and d(n) - input and reference signal;

�b

i , �
f

i
and �i - Givens rotation of angle �bi , �

f

M and

�i. For example:

�b

i =

�
cos �bi (n) sin �bi (n)
� sin �bi (n) cos �bi (n)

�
;

"
f

i
(n) - rotated forward prediction errors;

"i(n) - rotated estimation errors;

q
f

i
(n) and qi(n) - rotated input and reference signals;

�
f=2

i
(n) - square root of forward prediction error en-

ergy;


1=2

M (n) and �1=2

M (n) - square root of conversion fac-

tor and its inverse;
� i(n) - normalized a priori backward prediction er-
rors;

��i(n) - normalized a priori forward prediction errors.

Table II - A priori QR-LSL algorithm

Initialization: n = 0, �
f=2

M (0) = small positive const.
For i = 0; 1; :::; M � 1 do

f q
f

i
(0) = qi(�1) = 0; � i(0) = 0 g.

Step 1:


-1/2

0 (n) = 1; "
f

0(n+ 1) = u(n+ 1); "0(n) = d(n)

For i = 0; 1; :::; M � 1 do"
0 

-1/2

i+1
(n)

"
f

i+1
(n+1) q

f

i
(n+1)

"i+1(n) qi(n)

#
=

" � i(n) 
-1/2

i
(n)

"
f

i
(n+1) �1/2q

f

i
(n)

"i(n) �1/2qi(n�1)

#
�b

i+1

Step 2a:�
0 �

f=2

M (n+ 1)
�
=
�
"
f

M(n+ 1) �1/2�
f=2

M (n)
�
�f

M

��M (n+ 1) = 
-1/2

M (n) sin �fM=cos �
f

M

Step 2b: For i =M � 1; M � 2; :::; 0 do�
0 �

f=2

i
(n)

� i+1(n+ 1) ��i(n+ 1)

�
=

�
q
f

i
(n) �

f=2

i+1
(n)

� i(n) ��i+1(n+ 1)

�
�i+1

with � 0(n+ 1) = ��0(n+ 1).

A posteriori estimation error: eM(n) = "M (n)=
-1/2

M (n)
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� � � � � � a posteriori QR-LSL satisfying passivity constraints.
����� a priori QR-LSL with rounding in all operations.
��� a priori QR-LSL with passive rotations at the recursive lattice section.
� � � � a priori error-feedback LSL algorithm.
(�) or (o) indicate use of double mantissa wordlength to represent arguments

of square-roots in the �b angle solving part of the QR-LSL algorithms.

Figura 1. Averaged a priori MSE (Mean Square Estimation) error for channel equalizer experiment,
w is the mantissa wordlength excluding the sign bit and M is the order of the equalizer.


