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ABSTRACT

Suppose rate of change of coe�cients of a linear
time-variant system modeled via a di�erence equation is
restricted. The work presented herein is an attempt at
developing an algorithm that determines regions in coe�-

cient-spacewhere such a system is guaranteed to be globally
asymptotically stable. Such information can be extremely
useful in many applications. Some previously published re-
lated results are consolidated as well.

1. INTRODUCTION

Robust stability of linear time-variant (LTV) systems with
uncertain parameters have recently received considerable
attention [1],[2],[3]. These results �nd important applica-
tions in adaptive signal processing and control, recon�g-
urable and hybrid systems [4],[5], etc., where the impor-
tance of the following problem [6] is clear: Given the rate
of change of coe�cients is bounded by, say �max (de�ned
via an appropriate norm), �nd a region 
�max

in coe�cient-
space where global asymptotic stability (g.a.s.) of a time-
variant (TV) system is guaranteed. Related work in [2] and
[3] impose no limits on rate of coe�cient variations which
is not typically the case. For example in recon�gurable sys-
tems parameter changes are typically larger but their rates
of change are restricted due to underlying system dynamics.

This work attempts at proposing a methodology for con-
structing such coe�cient-space g.a.s. regions for LTV sys-
tems modeled via di�erence equations.

2. PRELIMINARIES

The following notation is used throughout: @+ denotes non-
negative integers; < denotes reals; <m denotes the m-tuple
vector space over <.

2.1. LTV Di�erence Equations

Consider the following LTV, �nite dimensional, zero input,
di�erence equation of order m:

y(n) = �

mX
i=1

ai(n)y(n� i) = �a(n)T y(n� 1); (1)

where a(n) = [a1(n); : : : ; am(n)]
T 2 <m and y(n � 1) =

[y(n � 1); : : : ; y(n �m)]T 2 <m.

Remarks:

(a) In the linear time-invariant (LTI) case, the g.a.s. region

TI is determined via the conditions imposed by all
roots of characteristic equation being inside unit circle
in complex plane.

(b) Clearly 
�max
� 
TI and therefore I � A(n) being

singular for all n is disallowed. For the linear system
in (1), local and global asymptotic stability notions are
equivalent.

Theorem 1 ([2]) Let 
� = fa(n) 2 <m : ka(n)k1 � 
 <

1g. Then, whenever a(n) 2 
�; 8n, (1) is g.a.s.

For LTI case the g.a.s. region is 
TI. With no restric-
tions imposed on rate of rate of coe�cient change, 
� in
fact denotes the largest hyperdiamond centered about ori-
gin within which coe�cients may vary while ensuring g.a.s.
[2].
Suppose rate of coe�cient variations is restricted, viz.,

k�a(n)k � �max where �a(n) = a(n + 1) � a(n). Here
k � k denotes any mutually consistent norm. Our ob-
jective is to determine a g.a.s. region 
�max

such that

�

:
= 
1 � 
�max

� 
TI
:
= 
0. A previous attempt

[7] possesses certain drawbacks: (a) Regions obtained do
not properly contain 
�; (b) �max is not imposed a priori;

(c) �max values implied are too conservative; (d) Compu-
tational burden is heavy.

2.2. Poles and Zeros of LTV Systems

For LTV systems Kamen [8] proposed certain TV poles and
zeros. A necessary and su�cient condition that relates these
to g.a.s. is also given. For simplicity, consider the second-
order case of (1), that is,

y(n) + a1(n)y(n� 1) + a2(n)y(n� 2) = 0: (2)

De�ne the two sequences fp1(n)g and fp2(n)g [8]

p1(n) + p2(n+ 1) = �a1(n); p1(n)p2(n) = a2(n): (3)

These are called the left and right pole sets of (2) re-
spectively [8]. De�ne the Vandermonde matrix V (n) =h

1 1
p2;1(n) p2;2(n)

i
, where p2;1(n) and p2;2(n) are a two

right pole sequences computed from (3) for two di�erent
initial conditions. Then we have

Theorem 2 ([8]) Suppose that V (n0) is invertible. Then

the LTV DT system in (2) is g.a.s. i�, for both i = 1 and

i = 2, jp2;i(n� 1) � p2;i(n� 2) � � � p2;i(n0)j ! 0 as n!1.



Therefore a su�cient condition for g.a.s. is that, for both
i = 1 and i = 2, jp2;i(n)j � 
 < 1; 8n > n0. These TV
poles can be thought of as a more appropriate generalization
of the usual TI (`frozen') poles.

3. CONSOLIDATION OF PREVIOUS

RESULTS

For convenience results are described for the second-order
case in (2); results for higher order case follows in a similar
manner. From Theorem 2, a su�cient condition for g.a.s.

of (2) is
Q

k�1

j=0
jp2;i(n + j)j � 
 < 1; 8n > n0, for both

i = 1; 2, that is, ensure that k consecutive products are less
than 
. However one only needs to ensure that consecutive
products (not necessarily of equal length) are less than 
!

3.1. Two-Product Analysis

Use (3) recursively to get

p2(n)p2(n + 1) = �a1(n)p2(n)� a2(n);

p2(n + 1) = �a1(n)�
a1(n)

p2(n)
: (4)

In this work it is assumed that p2(n) 6= 0. The case
p2(n) = 0 for some n 2 @+ may be handled with only mi-
nor modi�cations [8]. Given 
 < 1, construct the following
subset of 
�max

:



(2)

�max
=
�
a 2 <

2 : ja1(n)j+ ja2(n)j � 
 < 1; 8n
	
: (5)

Of course 

(2)

�max
= 
�. Given that a(n) 2 


(2)

�max
; 8n, the

following are obvious:

jp2(n)j � 1 =) jp2(n)p2(n+ 1)j � 
 < 1;

jp2(n)j � 1 =) jp2(n+ 1)j � 
 < 1: (6)

Claim 1 Suppose a(n) 2 

(2)

�max
; 8n. Then the following

are true:

(a) jp2(j)j � 
, for some j 2 @+
) jp2(j)p2(j � 1)j � 
 or jp2(j � 1)p2(j � 2)j � 
.

(b) jp2(j)p2(j � 1)j � 
, for some j 2 @+
) jp2(j � 1)j � 
 or jp2(j � 1)p2(j � 2)j � 
.

(c) jp2(j)p2(j � 1)j � 
, for some j 2 @+
) jp2(j � 1)p2(j� 2)j � 
 or jp2(j � 2)p2(j� 3)j � 
.

Proof:

(a) Suppose jp2(j)j � 
 and 
 < jp2(j � 1)p2(j � 2)j.
Because jp2(j � 2)j � 1 violates (6), we must have
1 < jp2(j � 2)j. Now (6) implies jp2(j � 1)j � 
 )

jp2(j)p2(j � 1)j � 
.

(b) Suppose jp2(j)p2(j � 1)j � 
 and 
 < jp2(j � 1)j.
We must have jp2(j � 2)j � 1; otherwise (6) implies
jp2(j�1)j � 
 which is a contradiction. Now (6) implies
jp2(j � 1)p2(j � 2)j � 
.

(c) Immediate from (b) and (c).2

Lemma 3 If a(n) 2 
(2); 8n, the LTV DT system in (2)

is g.a.s.

Proof: W.l.o.g take jp2(0)j � 
. Pick an arbitrary integer
1 � N . Apply (6) and Claim 1 to conclude that, w.l.o.g.,
we may take jp2(N)p2(N � 1)j � 
.
Consider sequence fp2(j)g

N
j=0. It is now possible to con-

struct a sequence fq2(i)g where each q2(i) term has magni-
tude bounded by 
 and is a product of 1 or 2 consecutive
terms of fp2(j)g. Indeed an explicit strategy for this con-
struction is as follows:

I. Put i = 1 and j = N .

II. Pick q2(i) = p2(j)p2(j � 1).

III. If jp2(j � 2)p2(j � 3)j � 
, put i = i + 1, j = j � 2,
and repeat Step II. Else pick q2(i+1) = p2(j � 2) and
q2(i+2) = p2(j � 3)p2(j� 4); put i = i+ 2, j = j � 3,
and repeat Step III.

IV. Repeat this process until p2(2)p2(1) or p2(1) are picked
(in which case pick p2(0) as the last term of fq2(i)g) or
p2(1)p2(0) is picked.

Therefore, given an arbitrarily small � > 0, we may makeQN

j=1
jp2(j)j < � for su�ciently large N . Indeed choose

N > 2 ln �= ln 
. Now Theorem 2 implies g.a.s. of (2).2
The fact that Theorem 1 is identical to restricting the

1-norm of each consecutive two-product of the canonical
state-space representation of (1) was shown in [7]. Notice

that 

(2)

�max
= 
�. Hence Lemma 3 consolidates these norm

based arguments and TV poles of [8].
Remark: Notice that no information regarding rate of

coe�cient change may be captured in two-product analysis.

3.2. Three-Product Analysis

Use (3) recursively to get

p2(n)p2(n+ 1)p2(n+ 2)

= [a1(n)a1(n+ 1)� a2(n+ 1)]p2(n) + a1(n+ 1)a2(n);

p2(n+ 1)p2(n+ 2)

= [a1(n)a1(n+ 1)� a2(n+ 1)] +
a1(n+ 1)a2(n)

p2(n)
: (7)

Let a = [a1; a2]
T and â = [â1; â2]

T . De�ne

X(a; â) = ja2â1j+ ja1â1 � â2j: (8)

Given 
 < 1, consider the following subset of 
�max
:



(3)

�max
=

�
a 2 <

2
: X(a; â) � 
;X(â;a) � 
;

8â 2 S(a;�max) \

(3)

�max

o
; (9)

where S(a;�max) = fâ 2 <2 : kâ�ak1 � �maxg. All point
pairs (a; â) must satisfy X(a; â) � 
 and X(â;a) � 
; 8n;

but they are not allowed to leave 

(3)

�max
. Its boundary

@[

(3)
�max

] acts as a `wall'; points located nearby may `col-
lide' on it but may not `cross over' to its exterior! This is

accounted for by including 

(3)

�max
(which is exactly what

needs to be found) in the right side of (9).

Consider the points in 

(3)

�max
. Then the following are

obvious:

jp2(n)j � 1 =) jp2(n)p2(n+ 1)p2(n+ 2)j � 
 < 1;

jp2(n)j � 1 =) jp2(n+ 1)p2(n+ 2)j � 
 < 1: (10)



Using arguments similar to (but more cumbersome than)
Claim 1 and Lemma 3, one may now show that clusters of 2
or 3 consecutive terms of fp2(j)g may be picked such that
each cluster has a magnitude bounded by 
. Theorem 2
then implies g.a.s. of (2). It is easy to show that X(a; â) �

 and X(â;a) � 
 is identical to restricting the 1-norm of
each consecutive three-product of the canonical state-space
representation of (1). This consolidates the norm based
arguments and TV poles of [8].

4. CONSTRUCTION OF G.A.S. REGIONS

How can we construct 

(3)

�max
� 
�max

in coe�cient-space

a 2 <2, given that k�ak � �max? Note that 

�


(2)

�max
�



(3)

�max
. Hence one objective of `expanding' 


�
by incorpo-

rating rate of coe�cient change is being met. The main

cause of di�culty in computing 

(3)

�max
however is appear-

ance of 

(3)

�max
itself in the right side of (9).

We propose to address this in two stages. The initial
work was developed for the second-order case in (2); keep-
ing computational complexity at a manageable level has
nevertheless been a challenging task.

4.1. Far-From-Boundary (FB) Points

First consider far-from-boundary (FB) points de�ned thus:



(3)

�max;FB
=
n
a 2 int[


(3)

�max
] : S(a;�max) � 


(3)

�max

o
;

(11)
where int[�] denotes interior. Each FB point needs at least
two `jumps' prior to `colliding' with boundary. We �rst

construct 

(3)
�max;FB

.

Observation 1 Let �1 � �2. Then 

(3)

�2
� 


(3)

�1
.

In particular 

(3)

� � 

(3)
0 ; 8� � 0 . Here 


(3)
0 =�

a 2 <2 : ja21 � a2j+ ja1a2j < 1
	
.

Observation 2 Suppose a is given. Then a 2 

(3)

�max;FB

i� X(a; â) � 
 and X(â;a) � 
; 8â 2 S(a;�max).

Hence we may construct 

(3)

�max;FB
by �rst determining

all a that satis�es the condition in Observation 2. To reduce
this computationally prohibitive exhaustive search scheme,
we have

Lemma 4 Suppose a is given. Then a 2 

(3)
�max;FB

i�

X(a; â) � 
 and X(â;a) � 
; 8â 2 @S(a;�max). Here

@[�] denotes boundary of region [�].

Proof: Suppose a 2 

(3)

�max;FB
. Obviously X(a; â) � 


and X(â;a) � 
; 8â 2 @S(a;�max).

Conversely, suppose a 62 

(3)

�max;FB
, that is, 9â 2 S(a;�max)

s.t. either X(a; â) > 
 or X(â;a) > 
. Reasoning is identi-
cal for both cases; hence take the former case, that is,

ja2(a1 +�a1)j+ ja1(a1 +�a1)� (a2 +�a2)j > 
:

Clearly we must have either

ja2(a1 +�a1)j+ ja1(a1 +�a1)� (a2 +�max)j > 
; or

ja2(a1 +�a1)j+ ja1(a1 +�a1)� (a2 ��max)j > 
:

This implies 9â 2 @S(a;�max) s.t. X(a; â) > 
 or
X(â;a) > 
.2
Hence a scheme requiring less overhead to construct



(3)

�max;FB
is as follows:

I. Pick a 2 

(3)
0 n 


(2)

�max
.

II. Check whether X(a; â) � 
 and X(â;a) � 
; 8â 2

@S(a;�max). Actually proof of Lemma 4 implies that
it is only necessary to check the two edges fâ : â1 2
[a1 ��max; a1 +�max]; â2 = ��maxg.

Results for k�a(n)k
1
� �max = 0:1 (with 
 = 1�10�6) is

in Figure 1. Given that k�a(n)k
1

does not vary at a rate

−1 0 1
−1

−0.5

0

0.5

1

a1

a2

Figure 1. 

(3)

0:1;FB is denoted by light- and dark-

shaded regions; light-shaded region denotes 
1 =


� = 

(2)

�max
.

exceeding 0:1 (per time instant), the TV DT system in (2)
is guaranteed to be g.a.s. as long as a(n) is restricted to be

within 

(3)

0:1;FB. Signi�cance and novelty of this information
is worth mentioning:

(a) Maximum allowable rate of coe�cient change is a priori
imposed.

(b) Corresponding region is in coe�cient-space.

(c) It is larger than any that is previously available.

4.2. Near-To-Boundary (NB) Points

Next consider near-to-boundary (NB) points de�ned thus:



(3)
�max;NB

=

n
a 2 int[


(3)
�max

] :

S(a;�max) \ ext[

(3)

�max
] 6= ;

o
;(12)

where ext[�] denotes exterior. Note that 

(3)

�max
=



(3)

�max;FB
[ 


(3)

�max;NB
. Given the appropriate `direction,'

each NB point needs only one `jump' to `collide' with bound-

ary. To construct 

(3)

�max;NB
the following scheme may be

used:

I. Put 

(3)

�max;NB
= 


(3)

�max;FB
.



II. Pick a 2 

(3)
0 n 


(3)

�max;NB
.

III. If X(a; â) � 
 and X(â;a) � 
; 8â 2 S(a;�max) \



(3)
�max;NB

, put 

(3)
�max;NB

= 

(3)
�max;NB

[fag and repeat
Step II with another a; else repeat Step II with an
alternate a.

IV. Repeat this process until no further enlargement of



(3)

�max;NB
is possible.

Remarks:

(a) The region obtained is a function of the particular order
in which a in Step II were picked.

(b) Since the objective is to `grow' the region 

(3)

�max;FB

previously obtained, points being picked in Step II

should be `just outside' (but still within 

(3)
0 ). There-

fore a `boundary following' scheme is useful.

(c) Note that 

(3)

�max;FB
has no `regular' shape (see Fig-

ure 1). Hence no simpli�cation via any vertex/edge
result akin to Lemma 4 is expected.

5. CONCLUSION

This work contains some preliminary work related to con-
struction of regions in coe�cient-space wherein a given LTV
di�erence equation with restricted rate of coe�cient change
is guaranteed to be g.a.s.
For the j = 2 and j = 3 cases (j = 1 case is trivial), it

has been shown that restricting 1-norm of each consecutive
j-product of the canonical state-space representation of (1)
is identical to j-product analysis of TV poles in [8]. This
in fact consolidates seemingly unrelated results that have
appeared in the literature. Although no formal proof is yet
available, it is conjectured that this relationship holds true
for all j 2 @+.
In constructing coe�cient-space g.a.s. regions, only the

second-order case in (2) has been addressed. An e�cient
algorithm (made possible by a certain edge result) to ob-

tain 

(3)
�max;FB

has been developed. However, even for the

second-order case, construction of 

(3)

�max;NB
can be time

consuming. On the other hand, it is the authors' experience
that, a signi�cant extra region is not gained by comput-

ing the latter. Computation of 

(3)

�max;FB
can be e�ciently

done and it signi�cantly improves the results in [2] (which
does not incorporate rate of coe�cient change) and [7] (the
drawbacks of which were mentioned elsewhere).

5.1. Future Research Topics

Several interesting future research topics are worth men-
tioning:

(a) Further reduction of computational burden in comput-

ing 

(3)
�max

: Computational geometric reasoning seems
a promising approach.

(b) Development of `su�ciency' regions: Are there regions

that are perhaps smaller than 

(3)
�max

but are of more
regular shape?

(c) Di�erent norm restrictions on rate of coe�cient change:
Work presented above is related to 1-norm. Di�erent
norms may provide easier algorithms.

(d) n-product (n � 4) analysis: With two-product analy-
sis, maximum possible g.a.s. region is 


�
itself; use of

three-products allows one to extend this region to 

(3)
0

(which is the limiting region obtained with �max ! 0).
Use of n-products (n � 4) can provide even larger re-
gions. However problem description and its solution is
expected to be correspondingly more complicated.

(e) Extension to higher order systems: Again the solution
is expected to be correspondingly more complicated.
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