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ABSTRACT

In this paper, we combine spherical subspace (SS) and ei-
gen based updating methods with the a�ne projection (AP)
method to produce a new family of fast SS-AP algorithms
that o�ers additional tradeo�s between computation and ad-
aptive �ltering performance. Moreover, the implementation
of SS-AP is less complicated than the fast RLS based AP
algorithms. For certain applications, e.g., echo cancellation
and equalization in digital subscriber loop (DSL) transceiv-
ers, SS-AP o�ers performance that is comparable to AP,
but at computational costs that are less than the fast AP
algorithms.

1. INTRODUCTION

The normalized least mean square (NLMS) algorithm
is popular in adaptive �ltering applications because of
its simplicity in terms of computation and implementa-
tion. However, convergence may be slow and tracking
poor. Fast recursive least squares (RLS) algorithms have
been developed, but computational costs, implementational
complexity, stability issues and excessively fast conver-
gence/tracking speeds can sometimes be a problem. Fast
[7][3] and medium fast [4] implementations of the a�ne pro-
jection (AP) method provide a range of compromise solu-
tions that fall between NLMS and rectangularly windowed
RLS.
If L is the adaptive �lter order and p is the projection or-

der (1 � p � L), then choosing p = 1 yields NLMS whereas
p = L produces rectangularly windowed RLS. The projec-
tion order determines how many equations are used at each
update to update the �lter coe�cients. As the projection
order is increased, so is the convergence speed as well as
the computational complexity. The computational cost of
the medium fast AP algorithm is 2L+5p2+9p. Fast imple-
mentations of the AP method based on using sliding window
fast RLS are on the order of 2L + 20p. The medium fast
AP algorithm based on using the matrix inversion lemma
is attractive because of its implementational simplicity, and
for small values of p (p �

p
L), it becomes computationally

attractive compared to the fast RLS algorithms. However,
compared to the fast AP algorithms, the medium fast AP
algorithm must have p < 4 to be computationally superior.
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In this paper, we introduce a modi�cation of the medium
fast AP algorithm which o�ers additional tradeo�s in com-
putation and performance. The modi�cation involves the
use of a simpli�ed, eigen based approximation for the p� p

correlation matrix. By tracking only a portion of the correl-
ation matrix eigenstructure [1][5], computational costs can
be reduced with a possible cost of some reduction in adapt-
ive performance. However, there are many practical scen-
arios where the performance reductions (or di�erences) are
minimal. Also, a large number of e�cient eigen tracking
methods have been developed in the last few years [2][6].
One way to track some of the eigencomponents and update
a simpli�ed version of the correlation matrix involves spher-
icalizing certain subsets of eigenvalues (e.g., replacing them
with their average value). This can be described as spher-
ical subspace (SS) updating. By introducing a multiplicity
of eigenvalues, de
ation can be used to reduce the size of
the eigen update and the computation associated with it. If
r eigencomponents (r < p) are tracked in a p�p correlation
matrix, i.e., p � r eigenvalues are sphericalized , the com-
putational costs of the medium fast AP algorithm can be
transformed to 2L+pr2+2pr+7p+O(r3): In this case, we
have used one of the most expensive, but numerically stable
eigen tracking methods. However if r = 1, we obtain a com-
putational cost of only 2L+10p. Using di�erent, simpli�ed
updating schemes for the correlation matrix can produce a
whole family of di�erent AP-like algorithms. In this paper,
we will focus on SS eigen updating methods and we will
refer to this class of algorithms as SS-AP algorithms. The
algorithms developed in this paper work best with white
noise inputs which are encountered in such telecommunica-
tions applications as echo cancellation and equalization for
digital subscriber loop (DSL) interfaces. In the simulation
section, we compare SS-AP with regular AP using a DSL
echo canceller.

2. AFFINE PROJECTION METHOD

The basic concept of the a�ne projection (AP) method (as
described in [4]) will be summarized in this section . The
output of the adaptive �lter is given by

y(k) = x
T

L(k)h(k) (1)

where h(k) is an L � 1 vector containing the �lter coe�-
cients at time k (L is the �lter order), xT

L
(k) = [x(k); x(k�

1); :::; x(k � L + 1)] is an L � 1 vector containing the past
L input values, and y(k) is the �lter output at time k. The



objective of the adaptive �lter is to generate an output that
matches a desired response, d(k), as well as possible. This
is accomplished by adjusting the �lter coe�cient vector at
every sample time by

h(k + 1) = h(k) + ��h(k) (2)

where �h(k) is the adjustment vector and � is the step size.
Speci�cally, this is accomplished by solving p equations (p
is called the projection order) at each sample time, i.e.,

dp(k) = X
T

p (k)h(k + 1) (3)

or equivalently,

ep(k) = X
T

p (k)�h(k) (4)

where

dp(k) = [d(k); :::; d(k� p+ 1)]T (5)

Xp(k) = [xL(k)j:::jxL(k � p+ 1)]L�p (6)

ep(k) = dp(k)�X
T

p (k)h(k): (7)

Note: Xp(k) can also be expressed as XT

p (k) =
[xp(k)j:::jxp(k� L+ 1)]:
For the underdetermined case (p < L), the minimum

norm solution is given by

�h(k) = Xp(k)
�
X
T

p (k)Xp(k)
�
�1

ep(k): (8)

We will �nd it convenient to rewrite this solution as

�h(k) = Xp(k)gp(k) (9)

where
gp(k) = R

�1
p (k)ep(k) (10)

and
Rp(k) = X

T

p (k)Xp(k): (11)

The computational cost of the basic AP method is (p +
1)L+O(p3). However, fast [7][3] and medium fast [4] imple-
mentations can be computed in 2L+20p and 2L+5p2+9p,
respectively. Note: For p = 1, the AP method becomes the
NLMS method.

3. SPHERICAL SUBSPACE UPDATING OF

THE CORRELATION MATRIX

The basic idea of spherical subspace updating is to simplify
the rank one eigen update of the correlation matrix. The
simpli�cation is accomplished by introducing a multiplicity
of eigenvalues which allows the size of the eigenproblem to
be de
ated. For example, if the correlation matrix is p � p

and the smallest r eigenvalues are replaced by a single ei-
genlevel (usually an average), then the p � p eigenproblem
can be de
ated to an (r+1)�(r+1) eigenproblem. We will
refer to a multiplicity of eigenvalues at a given level as an
eigenlevel, and the subspace associated with it as a spherical
subspace. Sphericalizing certain subspaces can lead to sig-
ni�cant reductions in the computation of the eigenproblem.
In [5], we showed that sphericalized subspace updating con-
verges in the mean with probability one under certain reas-
onable assumptions. In fact, [5] shows that eigenlevels and

spherical subspaces are multidimensional generalizations of
eigenvalues and eigenvectors.
There are many di�erent ways that the correlation matrix

could be sphericalized [1][5], but we will concentrate on two
major cases: 1) sphericalize all but the largest r eigenvalues,
or 2) sphericalize all but the smallest r eigenvalues. We will
denote the �rst case as a signal eigenstructure correlation
matrix of order r (SE(r)) and the second as a noise eigen-
structure correlation matrix of order r (NE(r)). Unless oth-
erwise indicated, we will normally replace the sphericalized
eigenvalues with their average level (although we could re-
place them with some other value, e.g., zero). Another way
that we could sphericalize the eigenvalues of the correlation
matrix would be to replace both the dominant r eigenvalues
with their average and also the subdominant p � r eigen-
values with their average. We will call this two eigenlevel
correlation matrix signal averaged of order r (SA(r)). The
three examples of sphericalization just described are de�ned
more precisely in the following equations.
Given the p� p correlation matrix,

R =

pX

i=1

�iuiu
T

i (12)

where �1 � �2 � � � � � �p; an SE(r) version is given by

RSE =

r+1X

i=1

diUiU
T

i ; (13)

di = �i; Ui = ui; i = 1 � � � r; (14)

dr+1 = ave(�r+1; � � � ; �p); Ur+1 = [ur+1j � � � jup]:(15)

Similarly, an NE(r) version is given by

RNE =

r+1X

i=1

diUiU
T

i ; (16)

d1 = ave(�1; � � � ; �p�r); U1 = [u1j � � � jup�r]; (17)
di+1 = �i+p�r ; Ui+1 = ui+p�r; i = 1 � � � r: (18)

An SA(r) version of the correlation matrix is given by

RSA =

2X

i=1

diUiU
T

i ; (19)

d1 = ave(�1; � � � ; �r); U1 = [u1j � � � jur ]; (20)

d2 = ave(�r+1 ; � � � ; �p); U2 = [ur+1j � � � jup]: (21)

The computational cost of updating SE(r) and NE(r) is
O(pr2) whereas SA(r) is O(prmin) where rmin = min(r; p�
r): Note: Since any SS decomposition can be divided into
two complementary orthogonal subspaces, the largest spher-
ical subspace does not need to be explicitly tracked. For
example, in an SA update, U1U

T

1 = I � U2U
T

2 . However, if
we can set r = 1, SE, NE and SA all have the exact same
computational costs, which are quite low: approximately 5p.
In fact, SE(1) is identical to SA(1) and NE(1) is identical
to SA(p � 1). They all track two distinct eigenlevels. For
more details on SE, SA and and other other variations on
SS updating, see [1] [5]. For other O(pr) and O(pr2) eigen
based tracking methods with various tracking abilities and
numerical stabilities, see [2]).



4. SPHERICAL SUBSPACE BASED AFFINE

PROJECTION (SS-AP) METHOD

Combining SS based correlation matrix updating with the
AP method is straightforward. We simply replace the correl-
ation matrix update with an SS update and use the simpler
structure of the SS decomposition to simplify other compu-
tations in the algorithm, namely (10). In addition, we use
an exponentially faded window on the SS correlation mat-
rix with a fading factor that is comparable to the length L

rectangular window: � = 1 � 1=L. The data matrix (6),
however, is rectangularly windowed. Thus, SS-AP involves
a hybrid kind of windowing: rectangular on the data mat-
rix (6), but exponentially faded on the correlation matrix
(11). This accomplishes two goals: 1) we avoid the nu-
merically dangerous downdate associated with a rectangu-
lar window, and 2) we reduce the computation by replacing
an update and downdate with a single, exponentially faded
update. Our simulations indicate that as long as we choose
� = 1� 1=L, no signi�cant degradation in performance res-
ults. By applying an exponentially faded SS update to the
p � p correlation matrix of the medium fast AP algorithm
[4], we can reduce the computation from 2L + 5p2 + 9p to
2L+pr2+2pr+7p if SE(r) or NE(r) are used. Alternatively,
the computation can be reduced to 2L+5pr+5p if SA(r) or
certain other O (pr) eigen tracking methods are used. The
various eigen/subspace tracking approaches have di�erent
e�ects on the adaptive performance of the AP method, and
the choice of r gives us one more degree of control over the
tradeo� between computational cost and adaptive perform-
ance of the SS-AP family of algorithms.

5. SIMULATIONS

In the following simulation, we compare the performance of
the AP method with SE(1)-AP. Recall that the SE(r) update
tracks the r dominant (primarily signal) eigencomponents
of the correlation matrix and sphericalizes the remaining
components. With SE(1), we track only the dominant ei-
gencomponent and sphericalize the rest.
In this simulation, we use echo cancellation with 2500

random input samples line coded as 2B1Q (two binary bits
are coded as one quaternary, i.e., four level signal). An echo
impulse response is used as shown in �g. 1. In �gs. 2 and
3, the tap weight error and the residual MSE are compared
for SE-AP (dotted line) and AP (solid line). In both �gures,
the step size is varied from � = 0.01, 0.025, 0.05, 0.1, 0.2,
0.3, to 0.4. The plots that converge more slowly correspond
to the smaller step sizes. Plots (a), (b) and (c) correspond
to projection orders of p = 1, 8 and 12. Note: the p = 1
case corresponds to NLMS.
In all simulations, white Gaussian noise is added to the

echo with an echo to noise SNR = 30dB. The �lter order is
L = 128 and the number of eigencomponents tracked is r =
1. The SS fading factor is set to � = 1�1=L. The SS correl-
ation matrix is initialized to Rp(0) = 10�6diag(p; :::;2; 1).
The non-SS correlation and the data matrices for both cases
are all initialized to zero. This explains why some of the
error measures might increase until the data and correla-
tion matrices are full loaded with L data samples. To pre-
vent the possibility of singularities in R�1p (k), a small con-
stant diagonal o�set (D = 10�6M) is added to Rp(k), i.e.,

(Rp(k) + 10�6I)�1 is used in place of R�1p (k).
Clearly, over a wide range of step sizes and projection

orders, SE-AP is comparable to AP. Notice that the only
signi�cant di�erences occur when the step size and/or the
projection order becomes too large. Also, we see that set-
ting r = 1 does not a�ect performance much. Of course,
this is because we used white input data. If the data is not
very white, SE(1)-AP may not work as well. Clearly, for-
cing most of the eigenvalues to be spherical when they are
supposed to be spherical does not cause much degradation
in performance. Also, increasing r does not seem to make
much di�erence in performance until r � p. Note: For
r > 1; using NE(r) instead of SE(r) does not work quite
as well because according to [5], the least dominant eigen-
components (tracked by NE(r)) converge more slowly than
the most dominant components (tracked by SE(r)). The
computational costs of SE(1)-AP are just 2L + 10p versus
2L+ 20p for fast implementations of the AP method. Also,
it is easier to implement SE(1)-AP than fast AP methods
(which use fast transversal RLS algorithms).
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Figure 1. Echo Impulse Response.

REFERENCES

[1] R. DeGroat. Non-iterative subspace tracking. IEEE

Trans. Sig. Proc., SP-40(3):571{577, Mar. 1992.

[2] R. DeGroat, E. Dowling, and D. Linebarger. Subspace
tracking. In V. Madisetti and D. Williams, editors, to
appear in Signal Processing Handbook. CRC Press.

[3] S. Gay and S. Tavathia. The fast a�ne projection al-
gorithm. In ICASSP 95, pages 3023{3026, 1995.

[4] Y. Kaneda, M. Tanaka, and J. Kojima. An adaptive al-
gorithm with fast convergence for multi-input sound con-
trol. In ACTIVE 95, pages 993{1004, Newport Beach,
CA, 1995.

[5] R.DeGroat, E.Dowling, H.Ye, and D.Linebarger. Spher-
ical subspace tracking for e�cient, high performance ad-
aptive signal processing applications. Sig. Proc., 50:101{
121, April 1996.

[6] V. U. Reddy, G. Mathew, and A. Paulraj. Some al-
gorithms for eigensubspace estimation. Digital Signal

Processing, 5:97{115, 1995.

[7] M. Tanaka, Y. Kaneda, S. Makino, and J. Kojima.
Fast projection algorithm and its step size control. In
ICASSP 95, pages 945{948, 1995.



0 500 1000 1500 2000
−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

mu = [0.01 0.025 0.05 0.1 0.2 0.3 0.4]

Time

M
S

E
 o

f T
ap

 W
ei

gh
ts

 (
dB

)

SE−AP (dotted) vs AP (solid): L= 128, P= 1, r= 0, 1 trials, D = 1e−06, SNR = 30

FADED WINDOW ON CORE CORRELATION MATRIX

(a) p=1

0 500 1000 1500 2000
−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

mu = [0.01 0.025 0.05 0.1 0.2 0.3 0.4]

Time

M
S

E
 o

f T
ap

 W
ei

gh
ts

 (
dB

)

SE−AP (dotted) vs AP (solid): L= 128, P= 8, r= 1, 1 trials, D = 1e−06, SNR = 30

FADED WINDOW ON CORE CORRELATION MATRIX

(b) p=8
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(c) p=12

Figure 2. MSE of Tap Weights: SS-AP (dotted)
versus AP (solid) Method.
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Figure 3. Residual MSE: SS-AP (dotted) versus AP
(solid) Method.


