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ABSTRACT

The recently proposed Chen’s LMS algorithm [1]
costs only half multiplications that of the conventional
direct-form LMS algorithm (DLMS). Despite of the merit,
the algorithm lacked rigorous theoretical analysis. This
work intends to characterize its properties and conditions
for mean and mean-square convergences. Closed-form
MSE are derived, which is slightly larger than that of
DLMS algorithm. It is shown, under the condition that the
LMS step size µ is very small and an extra compensation
step size α is properly chosen, Chen’s algorithm has
comparable performance to that of the DLMS algorithm.
For the algorithm to converge, a tighter bound for α than
before is also derived. The derived properties and
conditions are verified by simulations.

1. INTRODUCTION

The direct-form LMS algorithm (DLMS) [2], [3] is
the most popular temporal-domain direct-form adaptive
filtering algorithm due to its simplicity and robustness.
Regarding the temporal-domain direct-form approaches,
there exists many LMS variants in reducing the coefficient
updating complexities such as the sign-error, sign-input
and zero-forcing algorithms.

However, little improvements were done in reducing
its filtering complexities. Recently, a so-called FELMS
algorithm [3] was proposed to retain the same convergence
properties as those of DLMS while reducing both filtering
and updating complexities of LMS algorithm.

More recently, Chen et al. proposed a new LMS
adaptive filtering algorithm [1] which has close to 50%
reduction in filtering multiplications. Moreover, the
algorithm can be combined with the FELMS algorithm in
reducing its coefficient updating complexities. Despite the
merits, the algorithm’s properties have not been fully
addressed.

Here, the properties of the convergence both in the
mean and in the mean square are investigated in detail,
verified by both MATLAB and C simulations. It is shown,
under the condition that the LMS step size µ is very
smaller and an extra compensation step size α is properly
chosen, Chen’s algorithm has comparable performance to
that of the DLMS algorithm.

The paper is organized as follows. In the second
section, the Chen’s algorithm will be reviewed, followed
by its stability analysis in the third section. The third
section covers the issues of mean and mean-square
convergence of the weights and an extra compensation
factor, convergence bound for α and excess MSE of the
algorithm. The final section draws a conclusion on issues
to be further investigated.

2. REVIEW OF THE CHEN’S LMS
ALGORITHM

Given an adaptive filter with its zero-mean input
sequence x(n), zero-mean desired signal d(n) and
coefficients wk(n)’s to be adapted. The Chen’s LMS
algorithm is as shown below:
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and x(n)=0, P(n)=0 for n<0. It can be shown that the
complexity for the convolution is N/2+1 multiplications
and 3N/2+3 adds.

3. STABILITY ANALYSIS OF THE
ALGORITHM

For convenience, some definitions and notations are
defined as follows.
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 the filter input vector,
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 the Wiener solution,
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It is also emphasized that the independence
assumption and the independence theory [2] are adopted
here. That is: hN(n+1), w(n+1) are independent of both
x(n+1) and d(n+1), and they depend only on four inputs: (1)
The previous sample vectors of the input process, x(n),
x(n-1), �, x(1); (2) The previous samples of the desired
response, d(n), d(n-1), �, d(1); (3) The initial value of the
tap vector, w(0); and (4) The initial value of extra
coefficient, hN(0). Therefore
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 (a) The convergence of w(n):

It can be shown that
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where eopt(n)=d(n) − ∗w x
T

n( ) .
Here, by invoking the direct-averaging method described
by Kushner [2], [5] and assuming a small step size µ, the
weight error equation can be replaced by the following
stochastic difference equation:
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where R= E n nT[ ( ) ( )]x x is the correlation matrix of x(n).
Then, based on the mentioned independence assumption
and orthogonal property E[x(n)eopt(n)]=0, we have
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The convergence equation is the same as that of DLMS,
and the properties of weight in mean will be same as that
of DLMS accordingly. So is the step size µ has the
constraint of 0<µ<2/λmax, where λmax is the largest
eigenvalue of the correlation matrix R.

(b) The Convergence of hN(n)
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For very small µ or large n, C(n) is varying slowly so that
we can assume that C(n+1)≈C(n), then
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For the convergence of hN(n), it is required that 1 1− <α
such that E nhc[ ( )]ξ = 0  as n→ ∞ . This rough bound can

be further tightened later.

(c) The Convergence in the Mean Square

With the independence assumption [2], [5] the MSE
J′(n)=E[e′(n)e′(n)] of Chen’s algorithm can be reduced to
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Next, by applying the orthogonal property, J(n) can be
reduced to:
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where J E e n
optmin [ ( )]= 2 .

Since ξ ξw wx xT Tn n n n( ) ( ) ( ) ( ) is a scalar, by applying the

independence assumption [2], [5] we may rewrite it as
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And many cross terms arising from the multiplication



ξ ξw w( ) ( )n nT  reduce to zero matrices. Besides, as it was

shown before that for sufficiently large n, E nhc[ ( )]ξ ≈ 0 .

As a result, for n → ∞,
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By applying unitary transformation to K (n):

K (n)=QU(n)QT ,
we have
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where ui(n), i=0,1,�,N-1, are the elements of the diagonal
matrix U(n), and λi are the eigenvalues of the correlation
matrix R. Further
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We may write Eq. (13) as
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The final task is to evaluate E n
hc

[ ( )]ξ 2 . Obviously,
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Based on the independence assumption again, a simplified
form is obtained as follows,
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Note that when α≈0, J′(∞) becomes
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which is the same as the result derived by Haykin [2] for
DLMS algorithm under the condition of small µ. When µ
is sufficiently small, we have
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Since R is non-negative definite, λi>0 and 2-µλi,>0
for all i, for the convergence of w(n). Therefore
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before for α:
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4. SIMULATION RESULTS

In this section, we summarize the equalizer simulation
results for the property verifications of the Chen’s LMS
algorithm. The impulse response of the channel to be
equalized is assumed C(n)=[-1/2.1, 1, 1/2.1]. The channel
input signal is assumed a white Gaussian, zero-mean noise
with variance=1. The tap number of the adaptive equalizer
equals to 4. Fig. 1(a), 1(b) show the MSE (average of 500
runs) with µ=0.0001 and µ=0.03 respectively as a function
of α in steady state. Fig. 2(a), (b) show the MSE (average
of 500 runs) of DLMS and new algorithm with µ=0.0001
and some α values.

The upper bound of α is very close to 2 when µ is
very small from Eq. (26). Large α should be avoided as
suggested by both theoretical and simulation results. As
depicted in [2] and [3], the rate of convergence of w is
dominated by 1-µλmin (where λmin is the smallest
eigenvalue of R). The rate of convergence of hN is
dominated by 1-α. However, as α is extreme small, hN(n)
will track C(n) very slowly. In such a case, the rate of
convergence of MSE becomes much slower than that of



DLMS. Consequently, a comparably larger α than µλmin is
preferred.

All the results summarized are based on the
independence theory. But the shifting property of input
data introduces statistical dependence results [2]. The
results make E[x(n)(hN(n)-C(n))]� 0 even when x(n) is
zero-mean. That is, E[x(n)(hN(n)-C(n))] will yield a
constant upon convergence. Accordingly, every converged
weight is equal to the sum of Wiener solution and a DC
bias. The magnitude of DC bias is directly proportional to
α from the simulation results. The DC bias approaches to
zero when α approaches to zero. The rate of convergence

of Chen’s algorithm is the same as the DLMS, and the DC
bias can be ignored when µ=0.0001 and α=0.01 in the
example.

5. CONCLUSION

The properties of Chen’s algorithm have been
characterized in the paper. The simulation results match
the derived properties closely. Proper bounds for α and µ
are also given to facilitate the new algorithm’s pratical
usage. In this theoretical analysis, small µ is assumed. The
future work to be done is to assume a large condition.
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Fig. 1(a). The mean square errors in steady state as a
function of α; µ=0.0001, 4 taps.
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Fig. 1(b). The mean square errors in steady state as a
function of α; µ=0.03, 4 taps.
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Fig. 2(a). The mean square error of LMS, µ=0.0001.
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Fig. 2(b). The mean square error of Chen’s algorithm, for
µ=0.0001 and various α values.
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