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ABSTRACT

In many identi�cation and tracking problems, an ac-
curate estimate of the measurement noise variance is
available. A partially adaptive LMS-type algorithm
is developed which can exploit this information while
maintaining the simplicity and robustness of LMS. This
noise constrained LMS (NCLMS) algorithm is a type of
variable step-size LMS algorithm, which is derived by
adding constraints to the mean-square error optimiza-
tion. The convergence and steady-state performance
are analyzed. Both the theoretical results and simula-
tions show that NCLMS can dramatically outperform
LMS, RLS and other variable step-size LMS algorithms
in a su�ciently noisy environment.

1. INTRODUCTION

There continues to be a need for low complexity robust
algorithms for acquiring and tracking rapidly varying
linear systems/channels. For example, in wireless com-
munications, transmission bandwidths typical of time
division multiple access (TDMA) produce signi�cant
intersymbol interference (ISI) as well as severe fading;
this combination of ISI and fading requires channel es-
timation algorithms which can track rapid time varia-
tions and recover from deep fades. There are a range of
techniques available for trained (and decision directed)
identi�cation and tracking of linear FIR channels with
additive white Gaussian noise (AWGN), which we broadly
group into two classes: adaptive and model-based [1].
The adaptive algorithms do not explicitly use a model
for the channel coe�cients or noise and include least
mean squares (LMS), recursive least squares (RLS),
etc.. The model-based algorithms use various type of
models for the channel coe�cients (e.g., random walk,
autoregressive, or constant) and noise, where the model
parameters are either known or jointly estimated with
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the channel, and include the Kalman �lter.We note
that many adaptive algorithms can be interpreted in
a model based framework with data-dependent choice
of model parameters [2]. Also, some adaptive algo-
rithms implicitly use model parameters to set the algo-
rithm parameters, e.g., step-size and forgetting factors
require partial knowledge of input statistics to guar-
antee stable behavior and also noise statistics to guar-
antee a certain misadjustment/tracking performance.
Clearly, if partial knowledge of the channel is available
we should try to use it to improve performance, pro-
vided it doesn't increase complexity and/or decrease
robustness unduly.

Here we propose LMS-related algorithms for trained
(or decision directed) identi�cation and tracking of FIR
AWGN channels which exploit assumed knowledge of
the channel noise variance (but not the channel coef-
�cients). In fact, accurate estimates of the noise vari-
ance are known in many communications applications
where physical modelling and/or measurement of chan-
nel models along with AGC (automatic gain control)
is employed [3]. Although RLS-related algorithms can
also be developed, the algorithmwe propose retains the
simplicity and robustness of the usual LMS algorithm,
and its behavior can be examined analytically.

In this paper we show how to incorporate knowl-
edge of the channel noise variance by formulatinga con-
strained optimizationproblem. A (�xed-gain) Robbins-
Munro algorithm is developed for solving this prob-
lem. This algorithm, which we call noise constrained
LMS (NCLMS), is a type of variable step-size LMS
(VSLMS) algorithm which has about the same com-
plexity as LMS. We analyze the steady-state behavior
of NCLMS by obtaining an asymptotic expansion for
the misadjustment, and show explicitly how knowledge
of the noise variance is used in NCLMS to get a signif-
icant increase in convergence rate for �xed misadjust-
ment over LMS and other VSLMS algorithms (which
do not use knowledge of the noise variance). Extensive
simulations are conducted in both stationary and non-



stationary environments to test NCLMS against other
algorithms. The results show that in a su�ciently noisy
environment (and with su�cient knowledge of the noise
variance) NCLMS can approach or even exceed RLS
performance.

2. THE NCLMS ALGORITHM

For simplicity, we shall assume that the channel noise
variance is known exactly (the results can be general-
ized to the case where the variance is known within
some tolerance).To develop the NCLMS algorithm we
consider the time-invariant channel model

yk =

LX
i=0

cixk�i + nk = cTx(k) + nk; k = 0; 1; : : :

where xk is a stationary (input) process with mean 0
and variance �2x, nk is a stationary (noise) process with
mean 0 and variance �2n , and fxkg; fnkg are uncorre-
lated. Let R = Efx(k)x(k)T g and p = Efx(k)ykg.
Then minimizing the mean square error (MSE)

E(w) = Efe2
kg = Ef(yk � wTx(k))2g

over w gives the optimal weight value w = c. Note that
although R, p do not depend on the channel noise vari-

ance �2
n
, this does not mean that a (partially) adaptive

algorithm for estimating c cannot exploit knowledge of
�2n.

Now consider the following constrained minimiza-
tion problem which incorporates knowledge of �2n:

Minimize E(w) over w subject to E(w) = �2
n

The Lagrangian for this problem is

E1(w; �) = E(w) + �(E(w) � �2
n)

The critical values of E1(w; �) are w = c, � arbitrary.
Note that although there are no spurious critical w, the
fact that there is no unique (or even constrained) criti-
cal � will present problems for an iterative/adaptive al-
gorithm. To correct this, we add an additional penalty
term 
�2 (
 > 0) to E1(w; �) to get the augmented
Lagrangian

E2(w; �) = E(w) + �(E(w)� �2n) + 
�2

The unique critical value of E2(w; �) is w = c, � = 0.
To solve for the critical value of E2(w; �) and hence

the channel c based on a training sequence x(k); yk; k =
0; 1; :::, we use a �xed gain Robbins-Munro algorithm

w(k + 1) = w(k) + �kekx(k)

�k+1 = �k + �(
1

2
(e2k � �2n)) � �k) (1)

�k = �(1 + 
�k)

where �; � > 0 . We call Eq. (1) the noise constrained

LMS (NCLMS) algorithm. In order to guarantee sta-
bility of NCLMS we truncate the step-size �k to the
closed interval [�; �]. It can be shown that NCLMS is
stable, i.e., w(k) and �k are mean-square bounded if
0 � � � � < 2

3TrfRg and � < 1 (assuming x(k), nk are

white Gaussian sequences).
It is seen that NCLMS is in fact a type of variable

step size LMS (VSLMS) algorithm. If we set the noise
variance �2

n
to zero in Eq. (1) we get another VSLMS

algorithm

w(k + 1) = w(k) + �kekx(k)

�k+1 = �k + �(
1

2
e2k � �k) (2)

�k = �(1 + 
�k)

We call Eq. (2) the zero-noise constrained LMS (ZN-
CLMS) algorithm. This is a similar algorithm to the
one derived [4] and can be shown to have similar prop-
erties.

To compare LMS (step-size �), NCLMS and ZN-
CLMS in a stationary environment, we shall use the fol-
lowing respective asymptotic expansions for their mis-
adjustment valid for �TrfRg � 1 and derived under
approximations similar to [4]:

ML �
1

2
�TrR (3)
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1

2
�TrR
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1 +
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n

�
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A reasonable procedure to select parameters for the
purpose of comparing algorithms is to choose � for
a speci�ed LMS misadjustment ML = M , and then
choose �, 
 in NCLMS and ZNCLMS to maximize the
convergence rate while maintaining NCLMS and ZN-
CLMS misadjustmentMN ;MZ � (1 + �)M where �

is some small number, say � = 0:1 (for fair comparisons
the value of � in LMS can then be increased to also give
a misadjustment ML = (1 + �)M ). Now to compare
convergence rates we focus on the case where the algo-
rithms are far from steady-state, i.e., Efe2

k
g � �2n and

compare their largest time constants (near steady-state
they have approximately the same time constant). We
see that the time constant for NCLMS and ZNCLMS
are both given by

� �
1

�
Efe2
k
g�



However, from Eq. (4) we have that for NCLMS 


can be increased and � decreased without changing
the misadjustment, while for ZNCLMS 
 can only be
increased to a point without increasing the misadjust-
ment. This allows the convergence rate of NCLMS to
be dramatically increased over ZNCLMS (and LMS).
This demonstrates analytically (within the context of
the approximations employed) how the NCLMS algo-
rithm exploits knowledge of the noise variance.

2.1. Examples

First, LMS, RLS and NCLMS are compared in a sta-
tionary environment. The channel taps are

c = [:227; :460; :688; :460; :227]
T

(L = 5) and the other parameters are R = I, �2
n
=

0:01 and � = 0:1. We choose � = 4

100TrR
for LMS.

For NCLMS, � = 4

110TrR
, � = 2

3TrR
, � = 2

3000TrR
,

� = 0:01 and 
 is chosen such that � = 0:1. For RLS,
R�1(0) = 250I, � = 0:992. With these setting the the-
oretical misadjustments of all the algorithms are 0.02.
Fig. 1 shows the learning curves averaged over 100
trials. The experimental misadjustments of LMS, RLS
and NCLMS are 0.0236, 0.0238 and 0.0239 respectively,
which is in close agreement with the theory. NCLMS
converges at about the same rate as RLS even when
RLS is initialized with a favourable value to ensures its
stability.

Next, LMS, RLS and NCLMS are compared in non-
stationary environments. Fig. 2 shows the third tap
of the �lter tracking a random walk model c(k) =
c(k � 1) + v(k)(L = 5), where v(k) is white Gaussian
noise with zero mean and covariance 0:01I. Fig. 3
shows the third tap tracking a deterministic phase shift
model c(k) = c exp(j2�k=1000) (c as above). NCLMS
tracks these models much more accurately than LMS
and RLS (which have about the same tracking behav-
ior).

Finally, NCLMS and ZNCLMS are compared with
the same parameters (as above) except � = 0:95 for
ZNCLMS (and 
 is chosen such that � = 0:1). The
results are in Fig. 4 and Fig. 5. Clearly, NCLMS
learns faster and tracks better than ZNCLMS.
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Figure 1: Comparison of LMS, RLS and NCLMS in
stationary environment.
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Figure 2: Tracking of LMS, RLS and NCLMS with a
random walk model.
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Figure 3: Tracking of LMS, RLS and NCLMS with a
phase shift (deterministic) model. Only the real part
is shown here.
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Figure 4: Comparison of LMS, NCLMS and ZNCLMS
in stationary environment.
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Figure 5: Tracking of LMS, ZNCLMS and NCLMS
with a phase shift (deterministic) model. Only the real
part is shown here.


