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ABSTRACT

This paper addresses the problem of designing weighted or-

der statistic (WOS) �lters by employing an objective func-

tion given as the Lp norm of the error between the desired

signal and the estimated one. The conventional design of

WOS �lters uses a mean absolute error (MAE) objective

function, and as such, it is a special case of the general,

Lp norm based design, developed here. In this paper, it is

shown that in stack �ltering, the Lp norm can be expressed

as a linear combination of the decision errors incurred by

the Boolean operators at each level of the stack �lter archi-

tecture. Based on this formulation of the Lp norm, both

nonadaptive and adaptive algorithms for the design of Lp

WOS �lters are developed. A design example is considered,

to illustrate the performance of the designed Lp WOS �l-

ters with di�erent values of p. The simulation results show

that the Lp WOS �lters with p � 2 are capable of removing

more impulsive noise compared with the conventional MAE

WOS �lters.

1. INTRODUCTION

In recent years, considerable attention has been given to

the study of rank order based �lters, since these �lters yield

improved performance over linear �lters in restoring signals

corrupted with impulsive noise when sharp edges are to be

preserved. A very important part of the research in this

�eld has been concerned with the study of stack �lters. A

stack �lter has been de�ned in [1] as being a threshold de-

composition con�guration in which the �ltering operation

is performed via a positive Boolean function (PBF). It has

been shown in [2] that a stack �lter which is optimal for sig-

nal estimation in the mean absolute error (MAE) sense can

be determined as the solution of a linear program (LP). Un-

fortunately, the complexity of this LP increases faster than

exponentially with the size of the �lter. Therefore, an alter-

native approach of reducing the computational burden has

been devised in [3],[4], by restricting the analysis to the sub-

classes of stack �lters of well-known practical signi�cance.

One such example is the subclass of stack �lters de�ned by

linearly separable PBFs (LSPBFs), which perform the op-

eration of weighted order statistic (WOS) �ltering in the

multilevel domain [6]. The problem of designing a WOS

�lter which is approximatley optimal in the MAE sense has

been solved in [3].

The attractive feature of using the MAE criterion for the

design of stack �lters is that it allows the decomposition

of the estimation error of the �lter into a sum of decision

errors incurred by the Boolean operators at each level of the

stack �lter architecture [2]. Although the MAE criterion of

designing stack �lters has been extensively used for image

processing applications, higher order errors have been used

only in restricted designs of stack �lters, where the input

signal is assumed to be a constant signal embedded in white

noise [4],[5].

In spite of some expected bene�ts that could possibly be

achieved by employing an objective function given as the

pth order error between the desired and estimated signals

in stack �lter design, no attempt seems to have been made

to develop a mathematical framework needed for this de-

sign problem. In this paper, we investigate the possibility

of formulating the design problem of pth order error opti-

mal stack �lters as a linear optimization problem. Since

the design of stack �lters is generally carried out under the

assumption of ergodicity (i.e., it is assumed that sample av-

erages are equal to time averages) and by using \training"

sequences [7], in this paper, the pth order error is simply

referred to as an Lp norm. It is shown that in the case of

signal estimation using stack �lters, the Lp norm can be ex-

pressed as a linear function of the decision errors incurred

by the Boolean operators at each level of the stack �lter

architecture. Based on this formulation of the Lp norm, we

develop algorithms for the nonadaptive and adaptive design

of Lp WOS �lters.

2. STACK FILTER DESIGN USING AN

LP NORM OBJECTIVE FUNCTION

Let X(n) denote an L-level process which is received at the

input of a stack �lter Sf characterized by a positive Boolean

function (PBF) f of window size M. The input process X(n)

is assumed to be a corrupted version of some desired process

S(n). At each instant n, the output of the stack �lter is an

estimate of S(n). This estimate is based on the sequence

X(n) that appears in the input window of the stack �lter,

and it is denoted by Sf (X(n)). The pth order error between

the desired signal and the �lter's output is given by

Jp(Sf ) = E [ jS(n)� Sf (X(n)) j
p
] : (1)

The minimum Lp norm design of stack �lters can be formu-

lated as an optimization problem, in which the cost function

given by (1) is minimized. This minimization is subjected



to the constraint that the Boolean operator at the binary

levels of the �lter satisfy the stacking property.

In order to obtain a binary-level expression for the pth

order error between the desired and estimated signals, we

make use of the following two properties of stack �lters,

which are revealed here for the �rst time in the literature

of stack �ltering.

Theorem 1 In stack �ltering, at the binary level, the pth

power of the multilevel error,

e
p
(n)

�
= ( S(n)� Sf (X(n)) )

p
; (2)

can be expressed as

e
p
(n) =

L�1X
`=1

Ap(`; n) � (s`(n)� f(x`(n))) ; (3)

where

Ap(`; n)
�
= (S(n)� `+ 1)

p � (S(n)� `)
p
; (4)

with s`(n) and f(x`(n))) designating, respectively, the bi-

nary sequences at the level ` in the threshold decomposi-

tions of S(n) and X(n).

Theorem 2 In stack �ltering, the absolute value of the pth

order error between the desired signal and the estimated one

can be determined as a summation of the absolute values of

the weighted errors, eb(`; n)
�
= jAp(`; n)jjs`(n)� f(x`(n))j,

appearing at the binary levels of the �lter, i.e.,

j e(n) j
p
=

L�1X
`=1

jAp(`;n) j � j s`(n)� f(x`(n)) j : (5)

Due to the lack of space in the present paper, the proofs of

these theorems will be published elsewhere. However, it is

observed that the results of (3) and (5) can be easily veri�ed

numerically, by choosing arbitrary values for p, S(n), and

Sf (X(n)). As an example, to verify the relation (3) for the

case of p = 2, let us assume that S(n) = 9 and Sf (X(n)) =

6. Then, e(n) = S(n) � Sf (X(n)) = 3. Now, ep(n) =PL�1

`=1
Ap(`; n) = 9, as expected.

As an immediate consequence of Theorem 2, the pth order

error given by (1) can be expressed as a linear function of

the decision errors at the binary levels of the �lter, i.e.,

Jp(Sf ) =

L�1X
`=1

E [ jAp(`; n) j � j s`(n)� f(x`(n)) j ] : (6)

Based on the above formulation of the objective function

for stack �lter design, in the subsequent, we investigate the

problem of Lp norm design of weighted order statistic �lters.

3. LP NORM DESIGN OF WOS FILTERS

As shown in [6], the output of a WOS �lter at an instant n

can be obtained by the following procedure:

(a) replicate each input sample, X(n�j) (j = 0; 1; : : : ;M�

1), appearing in the �lter's input window (which is de-

noted by X(n) = fX(n);X(n� 1); : : : ;X(n�M+ 1)g)

at time n, by a given positive integer wj called the

weight;

(b) sort the resulting vector of

PM�1

j=0
wj elements;

(c) choose the wT-th largest value (wT denotes a positive

integer called the threshold) from the sorted vector.

Therefore, a WOS �lter is completely determined by a set of

positive integer weights, w0 ;w1 ; : : : ;wM�1 ; and wT ; and

it is de�ned by the following input-output relation

WOS(X(n)) = wT -th largest value in the set8><
>:

w0 timesz }| {
X(n) ; : : : ;X(n) ; : : : ;

wM�1 timesz }| {
X(n�M+ 1) ; : : : ;X(n�M+ 1)

9>=
>;

:

A WOS �lter is a special type of stack �lter, which is char-

acterized by a linearly separable PBF [3],[6]. A PBF f(x)

is said to be linearly separable if it can be expressed in the

form

f(x0; : : : ; xM�1) =

8><
>:

1 if

M�1X
j=0

wj � xj � wT

0 otherwise ;

(7)

where wT and all wj's are positive real numbers.

The Lp norm design of a WOS �lter requires to determine

the weights w = [w0w1 : : :wM�1]; such that the pth order

error in estimating a signal, S(n), from a noise corrupted

observation of the same, X(n), is minimized. In order to

derive algorithms for this design, it is noted that Jp(Sf )

given by (6) can be equivalently expressed as

Jp(Sf ) =

L�1X
`=1

E
�
jAp(`;n) j � ( s`(n)� f(x`(n)) )

2
�
: (8)

Thus, the Lp norm design of WOS �lters involves �nding

a PBF f(x) which minimizes (8), subject to f(x) being

linearly separable. In order to overcome the di�culty of

imposing the constraint of linear separability, we follow an

approach commonly used in WOS �lter design [3],[4], in

which a linear approximation of f(x) is employed. With

this approximation, the Lp norm design of WOS �lters is

carried out by minimizing the cost function given by

~Jp(w) =

L�1X
`=1

E
�
jAp(`; n) j � (s`(n)�w � x

T
` (n))

2
�
: (9)

One may notice that after replacing the function f(x) ap-

pearing in the expression for Jp(Sf ) given by (8) with a

linear function, WOS �lters become, in fact, linear FIR �l-

ters. That is, the design problem reduces to that of �nding

an optimal linear FIR �lter with nonnegative weights. How-

ever, in contrast to the traditional LMS linear �ltering [8],

this optimal FIR �lter minimizes a weighted sum of squared

errors incurred at the levels of the threshold decomposition

architecture.

The positive weights w� = [w
�

0w
�

1 : : :w
�

M�1]; which mini-

mize (9), determine an LSPBF f� given by

f
�

(x0; : : : ; xM�1) =

8><
>:

1 if

M�1X
j=0

w
�

j � xj � 0:5

0 otherwise :

(10)



Following an approach similar to that given in [3] for the

case of approximately optimal MAE WOS �lters, it can be

shown that
~Jp(w

�

) is close to the Lp norm achieved by an

Lp-optimal stack �lter, in spite of the fact that
~Jp(w) of (9)

is not identical to Jp(Sf ) given by (8).

A. Nonadaptive Design

The gradient vector of the cost function
~Jp(w) of (9) is

given by

r ~Jp = �2

L�1X
`=1

E
�
jAp(`;n) j �

�
s`(n)�w � xT` (n)

�
xT` (n)

�
:

(11)

Thus, when the positivity constraints are not imposed on

w, a WOS �lter which is approximately optimal in the sense

of the Lp norm is obtained as the solution of the following

system of linear equations

R �w
�

= c ; (12)

where R is an autocorrelation matrix given by

R =

L�1X
`=1

E
�
jAp(`; n) j � x

T
` (n) � x`(n)

�
; (13)

and c is a cross-correlation vector given as

c =

L�1X
`=1

E
�
jAp(`; n) j � s`(n) � x

T
` (n)

�
: (14)

The entries of the autocorrelation matrix can be easily eval-

uated at the multilevel domain as

R(i; j) = E

2
64
LR(i;j)X

`=1

j (S(n)� `+ 1)
p
� (S(n)� `)

p
j

3
75 ;

(15)

with

LR(i; j) = minfX(n� i);X(n� j)g; (16)

and i; j = 0; 1; : : : ;M� 1. Similarly, the entries of the cross-

correlation vector can be determined as

c(i) = E

2
4
Lc(i)X
`=1

j (S(n)� `+ 1)
p
� (S(n)� `)

p
j

3
5 ; (17)

with

Lc(i) = minfX(n� i);S(n)g; (18)

and i = 0; 1; : : : ;M� 1. Note that for the special case of p =

1, R and c become equal to the morphological correlation

matrices appearing in the conventional MAE design ofWOS

�lters developed in [3], i.e.,

R(i; j) = E [minfX(n� i);X(n� j)g] ; (19)

and

c(i) = E [minfX(n� i); S(n)g] : (20)

With linear inequality constraints imposing the positivity

of the weights, the Lp optimization problem can be solved

by a gradient projection method similar to the one used for

the design of MAE WOS �lters [3].

B. Adaptive Design

When the statistics of the observed and desired signals

are not available, the following adaptive algorithm can be

used to estimate the weights of an Lp-optimal WOS �lter:

w(n+ 1) = w(n) +

+�

L�1X
`=1

�
jAp(`; n) j

�
s`(n)�w(n) � x

T
` (n)

�
x
T
` (n)

�
: (19)

An alternative adaptive design algorithm can be derived by

using a sigmoidal approximation for the linearly separable

PBF f(x) appearing in the expression of the cost function

Jp(Sf ) given by (8), instead of the linear approximation

which has been used for the derivation of (19).

While nonadaptive algorithms are known to give good re-

sults when the observed and desired signals are jointly sta-

tionary, an adaptive algorithm can track the time-varying

statistics of the signals and it is suitable for low-cost imple-

mentations.

4. DESIGN EXAMPLE

To assess the performance of the Lp WOS �lters with di�er-

ent values of p, their application to the problem of restor-

ing images corrupted with impulsive noise has been inves-

tigated. Figures 1(a) and 1(b) show, respectively, a typical

test image and its noise-corrupted version which have been

used in the experiment. The noise-corrupted image of Fig-

ure 1(b) has been generated by adding positive impulsive

noise to the noise-free image of Figure 1(a). The impulsive

noise has a probability of occurrence of 0.35, and a mag-

nitude of 255. Figure 2 illustrates the processed images

obtained by applying the Lp WOS �lters of size 5� 5 with

p = 1; 2; 5 and 8, to the degraded image of Figure 1(b).

The values of Lp
p (p = 1; 2; 5 and 8) error of the restored

images are listed in Table 1, while the corresponding values

of ~Jp(w) are given in Table 2. As illustrated by Figure 2

of this example, the Lp WOS �lters with p � 2 provide a

better visual performance than that provided by the MAE

WOS �lter. Speci�cally, the L2, L5 and L8 WOS �lters

are capable of removing more impulses compared with the

conventional MAE WOS �lter. Moreover, as shown by the

results in Table 1, the ~J1-optimal WOS �lter (traditionally

referred to as the MAE WOS �lter [3],[4]) provides a larger

value of the MAE cost function compared to the Lp WOS

�lters with p = 2; 5 and 8.

The results of Table 1 indicate that, in this experiment,

the MAE, MSE, L5-norm error and L8-norm error continu-

ously decrease for the Lp WOS �lters with increasing values

of p. Thus, in this example, the L1 WOS �lter is expected

to provide the best approximation to any Lp-optimal WOS

�lter, among all possible approximately optimal Lp WOS

�lters. It has been also observed that actually, the L8 WOS

�lter is very close to the L1 WOS �lter. Speci�cally, by

increasing p beyond the value p = 8, the designed �lters

achieve almost insigni�cant reductions of the values of the

Lp-norm errors compared to those of the L8 WOS �lter.



(a) (b)

Figure 1. A 240x180 8-bit Peppers image. (a) The

original image. (b) Noise-corrupted version of (a).

(a) (b)

(c) (d)

Figure 2. Processed images applying 5x5 WOS �l-

ters obtained by using the criteria of (a) MAE, (b)

MSE, (c) L5-norm error, and (d) L8-norm error.

5. CONCLUSION

In this paper, a solution to the problem of designing WOS

�lters using an objective function given as the Lp norm of

the error between the desired and estimated signals, has

been formulated. It has been shown that in stack �ltering,

Table 1. Impulsive noise reduction with Lp WOS

�lters: MAE, MSE, L55, and L88 errors.

Filter MAE MSE L55 Error L88 Error

MAE WOS 10.74 9.9e+02 5.5e+09 5.2e+16

MSE WOS 9.28 5.7e+02 2.5e+09 2.2e+16

L5 WOS 8.08 3.6e+02 1.0e+09 8.7e+15

L8 WOS 6.82 2.1e+02 3.1e+08 2.1e+15

Table 2. Impulsive noise reduction with Lp WOS

�lters: ~J1(w), ~J2(w), ~J5(w), and ~J8(w) errors.

Filter ~J1 ~J2 ~J5 ~J8

MAE WOS 19.6 2.66e+03 1.60e+10 1.46e+17

MSE WOS 19.8 2.62e+03 1.55e+10 1.40e+17

L5 WOS 20.5 2.68e+03 1.52e+10 1.33e+17

L8 WOS 22.5 2.71e+03 1.58e+10 1.29e+17

the Lp norm can be expressed as a linear combination of the

decision errors incurred by the Boolean operators at each

binary level of the �lter. Based on this error formulation,

nonadaptive and adaptive algorithms for the design of an Lp

WOS �lter have been developed. Simulation results show

that an Lp WOS �lter with p � 2 provides a better visual

performance compared to that obtained by using an MAE

WOS �lter.
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