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ABSTRACT

Existing algorithms for accurately estimating the f(�) sin-
gularity spectrum from the samples of generalized dimen-
sions Dq of a multifractal chaotic time series use either lin-
ear interpolation of the known Dq values or �nely sample
the Dq curve. Also, the derivative in the expression for
Legendre transform necessary to go from Dq to f(�) is ap-
proximated using �rst order centered di�erence equation.
Finely sampling the Dq is computationally intensive and
the crude linear approximations to interpolation and di�er-
entiation give erroneous end points in the f(�) curve. We
propose using standard min-max �lter design methods to
more accurately interpolate between known samples of the
Dq values and evaluate the Legendre transform. We use op-
timum (min-max) interpolators and di�erentiators designed
with the Parks-McClellan algorithm. The new min-max
approach exhibits computational reduction and improved
accuracy. Examples are provided that show improved ac-
curacy for attractors that contain multifractal behavior.

1. INTRODUCTION

Chaotic signals which can result from non-linear dynamical
systems are very useful in many engineering applications,
e.g. secure communications [1]. In signals analysis, these
signals can be used to model natural phenomena [2].

There are several useful quantitative measures of chaos.
One of these is the in�nite hierarchy of generalized dimen-
sions (GD) Dq [3] which provide useful information about
the underlying dynamical system. They are de�ned as

Dq = lim
�!0

1

1 � q

log(
PM(�)

i=1
[pi(�)]

q)

log(�)
�1 � q � 1 (1)

where pi(�) is the relative number of trajectory points in
the ith cell of size � and M(�) is the number of volume
elements of size � needed to cover the attractor. If the at-
tractor of a dissipative system has a non-integer correlation
dimension D2, then the system has a strange attractor. A
chaotic attractor with non-constant GD is called a multi-
fractal. Multifractal measures are used to determine var-
ious fractal regimes present in the chaotic attractor since
two chaotic attractors with the same correlation dimension
D2 can be quite di�erent visually.

Although, theoretically, the Dq in (1) are known for all
values of q, in practice, they are only computed for a �nite
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range q 2 [qmin; qmax] and along a sampled grid with spac-
ing 4q, i.e., q = qmin; qmin +4q; qmin + 2 4 q; : : : ; qmax.
Large record lengths are needed to compute Dq when
j q j>> 0. Even when the recorded data lengths are long
enough to give valid Dq, the most e�cient box-counting
algorithm [4] for computing each value of Dq has a compu-
tational complexity of O(N logN), where N is the (large)
length of the time series. Hence, generally, the number of

computed samples of Dq ,
j qmax � qmin j

4q
, is kept small by

making the range j qmax � qmin j small or by coarsely sam-
pling Dq using large 4q. In the next section, we consider
the relationship between the generalized dimensions Dq and
the f(�) singularity spectrum.

1.1. f(�) singularity spectrum

When f(�) and Dq are smooth functions of � and q, the
Dq in equation (1) are related to the singularity spectrum
f(�) by the Legendre transform [5, 6] in (4) given below:

�(q) = (q � 1)Dq (2)

�(q) = Dq + (q � 1)
d

dq
Dq (3)

f(�) = f(�(q)) = q�(q)� �(q) (4)

Thus, if we know Dq , we can �nd �(q) and f(�) from equa-
tions (3)-(4) and vice versa.

The f(�) singularity spectrum provides a mathemati-
cally precise and naturally intuitive description of a mul-
tifractal attractor in terms of interwoven sets with singu-
larity strength � whose Hausdor� dimension is f(�) [5].
For any multifractal attractor, whose generalized dimen-
sions are monotonic decreasing,

Dq > Dq0 for q < q
0
; (5)

the singularity spectrum f(�) will be convex, with a single
maximum at q = 0 equal to D0, i.e f(�(0)) = D0, and
with in�nite slope at q = �1 [5]. The extrema � values
where f(�) = 0 are termed �min and �max. They are the
scaling indices for the densest and most rare�ed areas in the
attractor and they give the asymptotic values of Dq in (1),
i.e. �min = D1 and �max = D�1. Typically, D�1 and
D1 are almost impossible to extract using equation (1) on
real data because they require in�nite length data records.

Ideally, we want the Legendre transform of the Dq curve
in (4) to produce a very clean f(�) curve with stable, con-
verging end points. However, coarsely sampled Dq values



produce errors in f(�) [7]. Also, when the di�erentiation
needed for �(q) and f(�) in (3)-(4) is not accurately imple-
mented, the transform gives rise to an f(�) envelope with
spurious and erroneous end points. This may lead to am-
biguous determination of D1 and D�1 [8].

2. PREVIOUS ALGORITHMS

A number of algorithms have been proposed to address the
problem of accurate evaluation of f(�). These algorithms
include the following: (1) The development of a minimal
spanning tree algorithm [8]. This is an e�cient algorithm
for �nding the nearest neighbors of any arbitrary point on
the attractor. The method was proposed by Dominguez-
Tenreiro et al. as an alternative to the generalized corre-
lation integral (GCI) methods (equation (1)) of estimating
the generalized dimensions such that the Legendre trans-
form of the estimated Dq will give f(�) with no spurious
end-points. (2) Other methods [9, 10] have used variations
of GCI in (1), to compute Dq except that in order to obtain
an essentially continuous Dq curve needed for the Legendre
transform, either (i) the known Dq values were linearly in-
terpolated or (ii) the Dq values were computed at �nely
sampled points along the Dq curve using very small 4q.
Also, derivatives in the expressions for the Legendre trans-
form were approximated by �rst order centered di�erence
equations.

These methods can be computationally intensive, give
spurious end-points in f(�), and are sometimes only well
suited to certain chaotic attractors [8]. Some of the major
drawbacks of earlier methods are the introduction of spu-
rious interior points in f(�) caused by errors introduced
in the linear interpolation of known Dq values and by ap-
proximating a derivative using a �rst order centered dif-
ference equation in the expressions for �(q) and f(�) in
(3)-(4). Linear interpolation corresponds to a �lter with a
sinc-squared type frequency response [11] which can be a
very poor approximation to the ideal \box" lowpass �lter
needed for interpolation. The centered �rst order di�erence
operation can produce a poor sinusoidal approximation to
the ideal j! frequency response of a di�erentiator.

In the next section, we describe the min-max �lter de-
sign approach to the problem. The method involves the
design of optimum lowpass �lters and di�erentiators which
are close to the ideal frequency responses needed in the ac-
curate estimation of the f(�) singularity spectrum.

3. MIN-MAX FILTER DESIGN

Given any multifractal time series and coarsely sampled val-
ues of Dq estimated from equation (1) in the �nite range
q 2 [qmin; qmax], we interpolate between these points by a
factor L. This is accomplished by \stretching the signal",
i.e. inserting L�1 zeros between each pair of given Dq sam-
ples [12]. The e�ect of \stretching" the Dq is to create L�1
mirror images of the original Fourier transform spectrum.
To remove the mirror images, we pass the stretched signal
spectrum through a lowpass �lter whose passband edge is
a function of L and the bandwidth of the original Fourier
transform of the Dq. Thus, zero insertion between Dq sam-
ples followed by lowpass �ltering reduces to computing the

convolution of the lowpass �lter coe�cients h[n] with the
Dq curve with zeros inserted [12].

The coe�cients of the lowpass or interpolation �lter are
readily obtained from the well known Parks/McClellan Re-
mez Exchange �lter design algorithm [13]. The program is
available for designing linear phase �nite impulse response
(FIR) �lters based on the Chebyshev approximation crite-
rion. The Remez exchange algorithm �nds the �lter which
minimizes the maximumweighted error in the passband and
stopband, hence the term \min-max" optimization. The
program may be use to design lowpass, highpass or band-
pass �lters, and di�erentiators [14]. The maximum errors
in the passband and stopband are user-speci�ed as �1 and
�2, respectively. For example, �2 = 0:01 corresponds to
40dB attenuation in the stopband. The Parks/McClellan
algorithm gives the optimum (min-max) length n lowpass
�lter. If the initial frequency response of the �lter does not
satisfy the above speci�cations, then the �lter order n is
increased until the desired frequency response is attained.

4. RESULTS AND DISCUSSION

We applied the min-max �lter method to synthetic and real
generalized dimension data to check the versatility of our
approach. In our examples, we have normalized the fre-
quency axis by 2�

4Q
so that F = 0:5 corresponds to the

Nyquist frequency !N .
Synthetic data:

The �rst example is that of the attractor of a Cantor set [2]
that is asymptotically well modeled by a generator with two
intervals of length r1 = 0:408 and r2 = r21, and with equal
probability p1 = p2 = 0:5. The closed form expression for
the GD, Dq , of the Cantor set is known [2]. This Dq ex-
pression was �nely sampled (4q = 1) for q in a large range
of -36 to 36, as shown in Fig. 1(a), to represent an ideal
scenario. The corresponding singularity spectrum f(�) in
Fig. 1(b) was evaluated using a 6th order min-max dif-
ferentiator designed assuming passband cut-o� frequency
Fp = 0:15 and stopband Fs = 0:25, and error tolerances
�p = 0:1 and �s = 1�10�6. Notice that the maximum value
for f(�) in Fig. 1(b) corresponds to D0 in Fig. 1(a) and
the two extrema �min and �max where f(�) = 0, give the
correct asymptotic values D1 = 0:387 and D�1 = 0:773
[2]. Next, in order to compare our new method with con-
ventional algorithms under realistic conditions when few Dq

values are available, the ideal Dq curve in Fig. 1(a) is pur-
posely downsampled, i.e. evaluated at only 19 relatively
coarsely sampled (4q = 4) values of q. Fig. 2(a) shows
the linearly interpolated Dq values. Fig. 2(b) shows the
f(�) singularity spectrum using the linear interpolated val-
ues and centered �rst order di�erence operation. Notice
the spurious end points as well as invalid interior points. In
comparison, Fig. 2(c) shows the result of the min-max �l-
ter method on the sparsely sampled Dq using a 20th order
min-max interpolator and 6th order min-max di�erentia-
tor. The lowpass interpolation �lter has the speci�cations
Fp = 0:003, Fs = 0:246, �1 = 0:1 and �2 = 1 � 10�6, the
di�erentiator was designed to approximate an ideal j! fre-
quency response between normalized frequencies 0 and 0:1.
There are no invalid interior points in the f(�) singularity
spectrum and the spurious end points have been greatly re-



duced. The results of our method in Fig. 2(c) and the ideal
case depicted in Fig. 1(b) are very close except at the ends
of the curve, where f(�) < 0. However, these errors are
worse in the conventional approach.
Speech data:
The second example is the generalized dimensions, Dq, of
real data, speci�cally, 4150 samples of an unvoiced fricative
speech sound \S", spoken by an American female speaker
in the ISOLETE database [15]. The generalized dimen-
sions Dq were estimated in (1) using only 7 integer values
(4q = 1) for q from -3 to 3 [7]. These 7 samples were opti-
mally (min-max) interpolated by a factor of 4 and plotted in
Fig. 3(a) along with the linear interpolation of the sampled
Dq values in solid line. The �gure clearly shows the poor
approximation of linear interpolation when q is between 0 to
1 and 2 to 3. Fig. 3(b) shows the resulting f(�) using linear
interpolation and centered �rst order di�erence operation.
Note the spurious and interior end points, which create an
ambiguity in extracting information from the f(�) curve.
Our method, which used an e�cient 20th order min-max
interpolator and a 6th min-max di�erentiator, was able to
estimate D�1 and D1 at f(�) = 0 from only 7 values of
GD estimates. In this case, the lowpass �lter has the speci�-
cations Fp = 0:004, Fs = 0:2457, �1 = 0:1 and �2 = 1�10�6.
The di�erentiator passband was 0 and 0:1.

In Fig. 3(c), the asymmetric spread of points in � val-
ues around the maximum of f(�) reveal the inhomogeneity
in the attractor of unvoiced speech signals just like the vari-
ation in the Dq values [7].

Cubic spline interpolation was also implemented in com-
parison with the min-max approach, but cubic splines pro-
duced f(�) singularity spectrum envelope with spurious and
erroneous points when the attractor is marked by phase-
transitions. Cubic spline interpolation can be a poor ap-
proximation of an ideal lowpass �lter for signals that are
not highly oversampled. Phase-transitions in a chaotic at-
tractor occur when the otherwise smooth Dq curve has a
discontinuous derivative [6].

5. CONCLUSION

The importance of this new approach to singularity spec-
trum calculation is its improved accuracy and its computa-
tional reduction. This is due to the fact that the Dq curve
can be coarsely sampled and later optimally interpolated
to obtain the smooth curve that is needed to compute the
f(�) singularity spectrum. The proposed method also pro-
vides estimates of the generalized dimensions at D1 and
D�1 which are almost impossible to obtain using equation
(1) on real data with limited number of data points. The
method works well for attractors that exhibit multifractal
behavior and satisfy equation (5) in the range between qmin
and qmax. The proposed method exhibits improved accu-
racy over conventional linear or cubic spline interpolation.
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Figure 1: (a) Original GD, Dq , of the Cantor set, �nely sampled (4q = 1) from a closed form expression in [2]. (b)
Corresponding f(�) Spectrum. Note that the maximum f(�) value corresponds to D0 = 0:537 and that the end points �min
and �max where f(�) = 0 correspond to correct values of D1 = 0:387 and D�1 = 0:774, respectively, in Fig. 1(a).
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Figure 2: (a) Min-Max interpolated generalized dimensions of the Cantor set evaluated at 19 coarsely spaced Dq (4q = 4)
values (� = original sampled values, + = min-max interpolated values). (b) f(�) computed using linearly interpolated
Dq and centered �rst order di�erence equation. (c) f(�) of the originally sampled Dq values in Fig. 2 (a) using min-max
interpolator and di�erentiator. Notice the similarity between �gures 1(b) and 2(c) except for the error below the f(�) = 0
line which are probably due to lowpass �lter approximations.
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Figure 3: (a) Min-max interpolated GD, Dq , of the unvoiced fricative sound \S" spoken by an American Female Speaker
(� = original sampled values, + = min-max interpolated values, and solid line = linearly interpolated values). (b) f(�)
of linearly interpolated Dq in Fig. 3 (a) using centered �rst order di�erence equation. (c) f(�) of unvoiced fricative using
min-max interpolator/di�erentiator. The maximum value in the f(�) curve corresponds to D0 = 6:02 and the estimated
D�1 and D1 at f(�) = 0 are 9.3 and 1.5, respectively.


