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ABSTRACT

Based on a simplified nonlinear lumped element model
of the electrodynamic loudspeaker in either a closed or a
vented cabinet, a new nonlinear controller is derived, simu-
lated and implemented on a DSP. The Volterra series expan-
sion, a well known functional expansion to model nonlinear
systems, is used to estimate the nonlinear parameters from
distortion measurements. The controller is directly based
on the nonlinear differential equation, and is tested for the
case of a low frequency electrodynamic loudspeaker in a
closed cabinet. Digital implementation is realized on a gen-
eral purpose TMS320C30 DSP development board, using
the automatic code generation from schematic entry of the
Alta-Group SPW software.

1. INTRODUCTION

The electrodynamic loudspeaker suffers from several nonlin-
earities of which the most important ones are displacement
(z) dependent. Improvement of electro-acoustic transduc-
tion behavior can of course be achieved by changing the
electrical, magnetic, mechanical and acoustical design of
the transducer. These optimizations lead mostly to a more
expensive product and the question arises whether the non-
linearities can be reduced in another manner. With the
ever decreasing prices of digital signal processing hardware,
linearization of the transducer by means of an algorithm
implemented on a DSP becomes feasible. Besides this, lin-
ear equalizing of loudspeaker systems is already increasingly
applied using digital signal processing techniques.

2. SYSTEM IDENTIFICATION

2.1. Lumped element model

The major physical causes for the nonlinear transduction in
electrodynamic loudspeakers appear to be:

e The displacement dependent mechanical stiffness of the
suspension k¢(x)

e The displacement dependent electro-mechanic trans-
duction factor, called the force factor Bl(x)

e The displacement dependent self-inductance of the
voice coil L ()

The first one is caused by material properties of the sus-
pension. The latter two by the movement of the voice coil
out of the radial magnetic field and the movement of the
magnetic core inside the voice coil, respectively.

Based on the well known lumped element approach for
system modeling we obtain the two coupled nonlinear differ-
ential equations for a voltage driven loudspeaker, in either

a closed or a vented cabinet

dLc(z)i dz
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where £7'{} denotes the inverse Laplace transform, * con-
volution, u. is the driving voltage at the terminals and ¢
the voice coil current. The last term in Eq.(2) is the reluc-
tance force which is caused by the displacement dependent
magnetic energy, which on its turn is caused by the self-
inductance nonlinearity. The linear element in the electrical
domain is the voice coil resistance R.. Linear elements in
the mechanical domain are taken together in the mechanical
impedance Z(s), which is given by
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for respectively a speaker in a closed cabinet Eq.(3), and
in a vented cabinet Eq.(4). Elements in this impedance are
the effective mass m¢, mechanical damping R,,, mass of the
moving air in the vent m,, compliance of the air in the cab-
inet ¢, and the diaphragm surface area Sy. Note that the
form of the impedance Z(s) is the only difference between
the differential equations for the vented and closed cabi-
net case. This will simplify the derivation of a linearizing
controller as we will see later.

Nonlinear elements are described by truncated Taylor se-
ries expansions in x. The parameters of these expansions
are denoted as the nonlinear parameters of the model. The
linear parameters are determined from input impedance and
sound pressure response measurements. The nonlinear pa-
rameters are determined by optimization of the Volterra
frequency domain kernels, which are introduced next.

2.2. Volterra series

From the nonlinear differential equation, found by substitu-
tion of Eq.(2) in Eq.(1), we derive a nonlinear model in the
s-domain, based on the Volterra series expansion. In gen-
eral the output y(t) of a nonlinear system, characterized by
the continuous time Volterra series, is given by

y(t) = ho + /°° hi(T)z(t — 7)dr +

/_Oo /_Oo ha(71, 72)x(t — T1)x(t — T2)dTiT2 + . .. ®)

(oo} (oo}



where z(t) is the system input and hy(71,...,7,) are the
generalized impulse responses, also called kernels. Simi-
lar to linear systems we can determine, using the multi-
dimensional Laplace transform, the response in the s-
domain (using s = o + jw the complex frequency variable)

Y(s) = Hi(s)X(s)+ T {Ha(s1,52)X(s1)X(s2)} +
F2 {H3(81,82783)X(81)X(S2)X(S3)}... (6)

where the capital letters denote the Laplace transformed
versions of their small letter counterparts and I {} the con-
traction operator. The system response is thus determined
by a summation of all kernel responses, i.e. the Volterra
series can be seen as a Taylor series with memory [1].

The s-domain versions of the linear kernel H; and non-
linear kernels H> and H3 are derived (using the harmonic
balance method) from the nonlinear differential equation
driven with a multi-tone excitation [2].

Nonlinear parameters are determined by optimization
of these Volterra s-domain kernels on distortion measure-
ments, using a Simplex search method [3], minimizing

maxs; ||Ymea5u7“ed(5i)| - |Ymodel(5i)|| (7)

with Y,0de1(s) the complex output of the model given by
Eq.(6), and Yi,eqsured(s) the magnitude of the measured
distortions. Final results of this optimization are given
in Fig. 1. Note that the distortions by the model are
under-estimated, especially for frequencies in the range of
100-200Hz. This is less a problem than in case of over-
estimation, which leads to an increase of distortions. Next
to this, distortions in this frequency span are already rel-
atively low. Synthesis of a linearizing controller based on
the Volterra description is also possible, but for real-time
implementation limited to compensation of second order
distortions and not considered here [4].

3. NONLINEAR CONTROLLER

The controller which is considered here is directly derived
from the nonlinear differential equation. The method was
first proposed by Klippel and applied to low frequency-
[6] and horn-loudspeakers with success [6]. In this paper
we present a modified version of the original controller.
The original version suppresses the linear part of the self-
inductance, an undesirable effect if we want to perform lin-
ear equalizing preceding the nonlinear controller. Our ver-
sion, which follows an alternative derivation, does not has
this disadvantage. Starting point is the nonlinear differen-
tial equation which is found from substitution of Eq.(2) in

Eq.(1)

_ Re .1 Reky(x)
Ue = Bl($)£ {Z(s)}*x+T(x)x+
dL.(z)i dz Re  ,dLc(x)
a PO et o ®

We proceed by separation of the linear (desired) part of this
differential equation, given by

w=r {(Z(s) + ko) (M) + Blos} sz (9)
Bl

where Blg, ki and L.o are the linear components of the

nonlinear elements, i.e. the constant part of their Taylor

expansions. Note that in Eq.(9) the linear part of the self-

inductance (Leo) is included, which is not the case in the
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Figure 1. Results of nonlinear parameter optimization
of second- (a) and third-order (b) Volterra kernels. Mea-
sured microphone voltages (solid lines) are given together
with predicted voltages from Volterra model (dashed lines)
at a driving level of 7.5Vesy.

original derivation [5]. The output of the linearizing con-
troller is now found by defining the voltage u in Eq.(9) as the
desired input behavior of the linearized system. The input-
output description of this controller is then found from sub-
stitution of Eq.(9) into Eq.(8), resulting in

d g
4 = u+ Npr(z)r+ Np2 (I)d—at: + Npr(z)i® +
N ()i
dcliigjx)z + Np1F,, (10)

with u, the output of the controller and the static nonlinear
operators given by

Nox = Re{kt(x) ﬁ}

Bl(z) Bl
N32 = Bl(a:) — Blo
_ ReLcy ()
Now = 2BI(x) (11)
N, = L. ($) — Leo
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Figure 2. Nonlinear controller according to Egs.(10)-(13).
The S-block is the digital differentiator and the A-blocks
denote constant delay filters to equalize parallel processing
paths.

with Les () the first order derivative of L.(x).

Clearly, we need predictions or measurements of the
states x, i, £ and force on the linear mechanical elements
F,,. These are obtained by linear filtering for z and & using
Eq.(9), resulting in linear filters H,(s) and H,(s) respec-
tively. The current ¢ is determined by nomnlinear filtering,
using Eq.(2) without the reluctance force, given by

i = {[fl {Hi(s)}*u+Nk(x)z‘}Nb(x)
with N, = ™ (“'1])%_ ko
_ Bl
Ny o= e (12)

using linear filtering (H;(s)) to predict the linear current
denoted by ¢;. Linear state estimation of the current is not
sufficient, as is found from simulations, because of the great
sensitivity of the controller towards errors in the current.
The force F,, is found from linear filtering of the input
voltage as well, using the relation

Fo =L "{Z(s)H.(s)} *u=L " {Hp(s)} ¥u.  (13)

This results in an algorithm which is digitally imple-
mentable using the Bilinear transformation to obtain digital
versions of linear filters and using a digital differentiator.
The resulting digital controller is schematically depicted in
Fig.2. Advantages of the method are the highly transducer
related controller structure and its simplicity for higher or-
der nonlinear systems. Disadvantage is the use of the dif-
ferentiator. At low frequencies (< 500H z), however, where
distortions are relative large due to the fact that the voice
coil excursion is inversely proportional to the squared fre-
quency, these elements can be realized with a sufficient low
error.
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Figure 3. Simulated relative second- (d2) and third-order
(ds) harmonic distortion at a driving level of 5V. 5y without
(solid line) and with controller (dashed line). In (a) the
original controller [5] is applied and in (b) the new version
according to Fig. 2.

4. SIMULATION AND EXPERIMENT

Both controllers, the original version [5] and the new version
given by Egs.(10)- (13), are digitally realized. Digital lin-
ear filters in the first two controllers are derived from their
continuous frequency domain counterparts and the differen-
tiator is realized using the Simpson integration rule based
differentiator [7]. Fractional sample delayers needed in the
parallel paths of these controllers are realized by linear in-
terpolators.

4.1. Simulation

Using sinusoidal excitations from 20 to 200Hz at a driving
level of 5V.ss the response of the nonlinear system, with
and without controllers applied, is determined. Second-
and third-order harmonic distortion are calculated using a
8192 point DFT with an equal length Hanning window.
Simulation results with the original controller are given in
Fig.3(a) and with the new controller in Fig.3(b). With both
controllers distortions are not completely eliminated due to
the use of linear state prediction. Clearly seen, however,
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Figure 4. Measured relative second- (d2) and third-order
(d3) harmonic distortion without (solid line) and with con-
troller (dashed line). In (a) the results with the original
controller [5] and in (b) with the new version according to
Fig. 2 are given, both at an input voltage of 5Veyy.

is the better performance of the new controller compared
to the original one which, especially above the 100H z, in-
creases second- and third-order distortions. This is due to
the equalization of the fundamental response by the origi-
nal controller at this frequency, which results in an incorrect
prediction of the states. From Fig.3(b) we see that distor-
tions are not increased with this controller, although second
order distortions at very low frequencies are less reduced.
Considering these simulation results we expect a better per-
formance from the new controller.

4.2. Measurement

Both controllers are implemented on a general purpose
TMS320C30 DSP development board at a sample rate of
15kHz. The output of this system drives a highly linear
power amplifier which on its turn is connected to a Philips
AD—10202/W 8 low frequency loudspeaker in a closed cabi-
net with a volume of 361, resulting in a resonance frequency
of approx. 57Hz. All distortion measurements are per-
formed in the near-field, avoiding the need for an anechoic

chamber, using a microphone and a frequency selective volt-
age measurement. Results with both controllers are de-
picted in Fig.4(a)/(b). From Fig.4(a) we observe the resem-
blance with the results from the simulations with this con-
troller. Especially the second order distortion is increased
above 120Hz. Looking at the results with the new version
in Fig.4(b), it is clear that also in practice the performance
is indeed better that with the original version. Distortions
are even further decreased than predicted by the simula-
tions which is a satisfying result.

5. CONCLUSIONS

In this paper we have derived a new linearizing controller
to eliminate the electrodynamic transducer nonlinearities.
From simulations as well as measurements with a test loud-
speaker it is clear that the new version performs better than
the original version. Second- and third-order distortions are
reduced down to acceptable levels. Main reason of the bet-
ter performance is the fact that the new controller does
not affect the fundamental frequency and therefore makes
no error in the state prediction. For loudspeakers with a
small self-inductance this is less of a problem and the origi-
nal controller may suffice. The extra needed computational
complexity of the new controller, only two nonlinear static
operations and one linear filter, is quite low and therefore
not a hindrance for implementation on a general purpose
DSP. Although we have derived the nonlinear controller for
a loudspeaker in a vented cabinet as well, experimental ap-
plication of it is left as a topic for future research.
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