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Abstract

Nonlinearities are often encountered in the analysis and
processing of real-world signals. This paper develops new
transformations for nonlinear signal processing. The the-
ory of tensor norms is employed to show that wavelets
provide an optimal basis for the new transformations. The
results are applied to Volterra kernel identi�cation.

1. Introduction

Nonlinear signal coupling, mixing, and interaction play
an important role in the analysis and processing of many
signals. For instance, harmonic distortions and intermod-
ulations are indicative of nonlinear behavior in ampli�ers
and faults in rotating machinery. Nonlinearities also arise
in speech and audio processing, imaging, and communica-
tions. Furthermore, nonlinear signal processing techniques
are commonly used in signal estimation and detection, im-
age enhancement and restoration, and �ltering.

This paper describes two new structures for nonlinear
signal processing. Both structures are represented by the
nonlinear signal transformation depicted in Figure 1. A
length m signal vector x is �rst decomposed by an or-

thonormal signal basis fb1; : : : ;bmg. The outputs of this
�rst stage, f�1; : : : ; �mg, are the coe�cients of the signal
with respect to this basis. Next, the signal coe�cients
are combined in nonlinear processing nodes, denoted by �,

that are simple p-th order polynomial operations on the
signal coe�cients. The nonlinear signal transformation
(NST) depicted in Figure 1 is denoted by Fp. Concisely,
Fp : x 7! �, where the � = [�1; : : : ; �n]

T are called p-th

order nonlinear coe�cients of the signal x.
The objective of the NST is to generate all possible

p-th order nonlinear interactions between the various sig-
nal components. The strengths of the interactions are re-
ected in the nonlinear signal coe�cients �. The nonlinear
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Figure 1. Nonlinear signal transformation Fp.

signal coe�cients can be used for e�cient nonlinear �lter
implementations, robust statistical estimation, and non-
linear signal analysis. Moreover, we will show that NSTs
based on the wavelet transform are, in a certain sense, opti-
mal for nonlinear processing. Applications of NSTs include
Volterra �ltering [3] and higher order statistical analysis.

Two types of nonlinear processing nodes distinguish
the two structures considered in this paper. Product nodes
form a nonlinear combination of the coe�cients according
to

� (�1; : : : ; �m) = �i1�i2 � � ��ip ; 1 � i1 � � � � � ip � m

Di�erent p-fold products of the signal coe�cients are com-
puted at each product node. Summing nodes form a non-
linear combination of the coe�cients according to

� (�1; : : : ; �m) =

 
mX
i=1

ai�i

!p

where
P

i
ai�i is a linear combination of the coe�cients.

Di�erent linear combinations of the signal coe�cients are
raised to the p-th power at each summing node.

Although the outputs f�kg
n
k=1 of the product and sum-

ming nodes are not equivalent, they both produce similar
NSTs. In general, the outputs of the nonlinear processing
nodes represent the p-fold interactions of various compo-
nents of the original signal. For example, if b1; : : : ;bm are



chosen as Fourier basis elements, then the outputs repre-
sent p-fold frequency intermodulations. If b1; : : : ;bm are
the canonical unit vectors and x is a vector of time-lagged
samples, then the outputs represent p-fold products of dif-
ferent time lags of the signal. The number of nonlinear
processing nodes n must be greater than the signal length
m in order to completely represent all possible nonlinear
interactions. In fact, it is shown in Section 2 that � rep-
resents all possible p-th order nonlinear interactions with
n = (m+p�1

p ), where (m+p�1
p ) is the binomial coe�cient.

Nonlinear signal analysis is traditionally carried out in
the time or frequency domains. However, there are good
reasons for considering alternative signal representations
such as the wavelet domain [2]. From a practical perspec-
tive, studying nonlinear e�ects in the wavelet domain al-
lows one to perform local nonlinear analysis and processing
in both time and frequency. This can be advantageous in
many non-stationary problems such as machinery moni-
toring [5] and image processing [6]. From a theoretical
perspective, in Section 3 we show that the wavelet domain
provides an optimal framework for studying nonlinear sig-
nals and systems. In Section 4, we apply the theoretical
developments to a Volterra kernel identi�cation problem.

2. Complete NSTs

2.1 Criterion for Completeness

In this section, we show that the transformation
Fp : x 7! � pictured in Figure 1 provides a complete
representation of all p-th order nonlinear signal interac-
tions. The notion of a complete transformation is de�ned
as follows.

De�nition 1. Let Fp be �xed. If for every signal x 2 IRm

and every multidimensional array h 2 IRm
� � � � � IRm| {z }
p-times

there exists a collection of real numbers f�kg
n
k=1 such that

mX
i1;:::;ip=1

hi1;:::;ipx(i1) � � �x(ip) =

nX
k=1

�k �k

where � = Fp(x), then the transformation Fp is said to be
a complete p-th order signal transformation.

De�nition 1 states that every p-th order multilinear
functional of x may be computed by a linear functional
of �. Therefore, a complete p-th order nonlinear signal
transformation allows us to study all possible p-th order

nonlinear signal interactions of x in terms of simple linear
operations on �. This implies that a complete NST is ca-
pable of realizing every possible p-th order Volterra �lter
of x. Furthermore, a complete NST captures all possible
p-th order signal interactions necessary to compute higher
order statistical quantities such as the moments and cu-
mulants of x.

We now show that both the product node and sum-
ming node transformations are complete. The NSTs can
be interpreted as a linear mapping on an appropriate ten-
sor space. Consequently, the notion of completeness can

be formulated as a spanning condition in a tensor space.
Due to space limitations, we simply state the results. The
details are given in [7]. The reader should keep in mind
that the theory of tensor spaces plays an integral role in
the analysis of NSTs, and we will discuss tensor spaces
again in the next section.

2.2 Product Node Transformation

In the product node transformation, di�erent p-fold
products of the signal coe�cients are computed at each
node according to

� (�1; : : : ; �m) = �i1�i2 � � ��ip

Completeness of the this transformation is easily estab-
lished by noting that this structure is related to a sym-
metric tensor space.

Theorem 2. Let fb1; : : : ;bmg be a basis (orthonormal
basis) for IRm. Then the NST with (m+p�1

p ) product nodes
forming all unique p-fold products of �1; : : : ; �m is com-
plete.

2.3 Summing Node Transformation

Recall that the summing node nonlinearities raise lin-
ear combinations of the f�1; : : : ; �mg to the p-th power:

� (�1; : : : ; �m) =

 X
i

ai�i

!p

We may view the faig as weights in the second stage of
the structure pictured in Figure 1. A di�erent linear com-
bination feeds into each nonlinear processing node. Alter-
natively, we can interpret the summing node structure in
the following way. Let f�jkg

m
j=1 denote the weights to the

k-th nonlinear node. De�ne

fk =

mX
j=1

�jkbj

Then the output of the k-th nonlinear node is given by

�k =
�
f
T
k x
�p

Hence, an alternative representation of the summing node
structure is a bank of n linear �lters ffkg

n
k=1 each followed

by a simple monomial nonlinearity (�)p. The summing
node transformation provides an extremely simple struc-
ture for generating complex nonlinear signal interactions.
The key issue is how can the �lters ffkg

n
k=1 be designed so

that the resulting transformation is complete. A simple,
constructive method to design a complete summing node
structure is given next.

Let fb1; : : : ;bmg be a basis for IRm and let
fa0; a1; : : : ; apg � IR: Next, let n = (m+p�1

p ) and de�ne
the set of vectors

fakg
n
k=1 =

(
[ak1 ; : : : ; akm ]

T :

mX
j=1

kj = p; kj 2 f0; : : : ; pg

)
(1)



Let B = [b1; : : : ;bm]
T and de�ne

fk = Bak (2)

fk is a linear combination of the basis vectors fb1; : : : ;bmg
and ak is a vector containing the coe�cients of the combi-
nation. This construction of ffkg leads to a complete p-th
order transformation.

Theorem 3. Let � 2 IR, j�j 6= 1, � 6= 0. Take a0 = 0
and aj = �j � 1, j = 1; : : : ; p, and form ffkg

n
k=1 according

to equations (1) and (2). Then the summing node NST is
complete.

The construction above basically generates a class of
linear �lters su�ciently rich so that their tensor products
span all possible p-th order interactions of the basis vec-
tors.

The summing node transformation is particularly in-
teresting because it allows us to represent every p-th order
Volterra �lter as simple �lter bank, as shown in Figure 2.
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Figure 2. Volterra �lter realization using summing node
transformation. This realization conveniently separates
the dynamics and nonlinearity of the �lter.

Volterra �lter realizations of this type are often re-
ferred to as parallel-cascade realizations. Previously stud-
ied parallel-cascade constructions rely on complicated nu-
merical optimization techniques [3] and construct a set of
kernel-speci�c linear �lters. Hence, a separate parallel-

cascade structure is required to represent each distinct
Volterra �lter. In contrast, the parallel-cascade realiza-
tion based on the summing node transformation is capa-
ble of representing every p-th order Volterra �lter by sim-

ply adjusting the output weights f�kg
n
k=1. The linear �l-

ters ffkg
n
k=1 of the summing node transformation are the

same for every Volterra kernel. Hence, the summing node
transformation is a universal structure capable of realiz-
ing every homogeneous Volterra �lter. Nonhomogeneous
Volterra �lters can also be implemented with the summing
nodes by following each linear �lter with a degree p poly-
nomial nonlinearity instead of the homogeneous p-th order
monomial.

3. NSTs in the Wavelet Domain

The previous section has shown that complete non-
linear signal transformations can be derived from any or-
thonormal signal basis B = fb1; : : : ;bmg. For example,
B may be a time, Fourier, or wavelet domain basis. We

will now show that wavelet-based NSTs o�er a signi�cant
theoretical advantage. The motivation for wavelet-based
NSTs is developed for in�nite dimensional (continuous)
spaces (note that until now we have focused on �nite di-
mensional signal spaces). The properties of wavelet-based
NSTs in the in�nite dimensional setting carry over to high-
dimensional sampled spaces.

It has been shown that noise removal, compression,
and signal recovery methods based on wavelet coe�cient
shrinkage or wavelet series truncation enjoy asymptotic
minimax performance characteristics and do not introduce
excessive artifacts in the signal reconstruction [1]. The
theoretical justi�cation for the exceptional performance of
wavelet-based processing is the fact that wavelet bases are
unconditional bases for many signal spaces.

It is well-known that wavelet bases derived from mul-
tiresolution transformations are unconditional bases for a
diverse variety of signal spaces. However, for the NSTs of
interest, tensor spaces are the natural framework to con-
sider. Hence, we would like to establish the uncondition-
ality of tensor product wavelet bases. It should be noted
that the tensor wavelet basis, also referred to as the \rect-
angular wavelet decomposition" [2], is quite di�erent from
the usual multidimensional wavelet basis obtained via a
multiresolution analysis.

The theorem below, proved in [7], shows that the tensor
product of a wavelet basis is an unconditional basis for the
tensor space Lp(IR)
�p Lp(IR), which is isometric to the
space of 2D Lp functions.

Theorem 4. If f�ig is an unconditional wavelet basis for
Lp(IR), 1 < p < 1, then f�i 
 �jg is an unconditional
basis for Lp(IR)
�p Lp(IR).

This result can easily be extended to arbitrary p-th or-
der tensor spaces, and shows that wavelet-based NSTs cor-
respond to an unconditional basis expansion of the nonlin-
ear signal coe�cients. It should be possible to extend this
result to more general spaces, including various smooth-
ness spaces. One possible starting point for the general
problem may be found in [4].

4. Application | Volterra Kernel Esti-

mation and Approximation

To illustrate the estimation power of wavelet-based
NSTs for Volterra �ltering, consider the following Volterra
kernel estimation problem. We observe the input and out-
put of a quadratic interaction, given by

y(k) =

mX
i;j=1

h(i; j)x(k � i)x(k � j)

We assume that the input signal fx(k)g is i.i.d. zero-
mean Gaussian. Hence, we have the model Y =Pm

i;j=1
h(i; j)XiXj; where fXig

m
i=1 are i.i.d. zero-mean

Gaussian with variance �2. The kernel h is easily esti-
mated, via correlation analysis, from independent obser-
vations of fXig and Y . Let s(i; j) denote the sample av-
erage estimate of E[Y XiXj]. This leads to the following



estimator of h:

bh(i; j) =
8<:

s(i;j)�(m+2)�1
P

k
s(k;k)

2 �4
; i = j

s(i;j)

2 �4
; i 6= j

(3)

This simple correlation estimator converges to the true
kernel as the number of observations increases. However,
for a �nite number of data the resulting estimate is typ-
ically very noisy. To improve our estimate, we suggest
expanding the estimate in a tensor basis and applying a
threshold to the coe�cients of the expansion. The hard-
threshold, at level � , is given by

e�i =
8<:
b�i; b�i � �;

0; b�i < �:

(4)

We compare the performance of the wavelet and
Fourier tensor bases in a simulated estimation problem.
The kernel h is depicted in Figure 3 (a). This kernel is
the actual quadratic Volterra kernel measured for an au-

dio loudspeaker.1 The raw estimate bh obtained from the
simulated estimation procedure above is pictured in Figure
3 (b). The noise in this raw estimate is reduced by thresh-
olding the Fourier and wavelet kernel expansions at the
level � = [2 log(n)]1=2�, where � standard deviation of the
noise and n = m2 = 1024, the dimension of the discretized
kernel. This is the choice suggested in [1]. Figure 3 (c)
and (d) show the resulting estimates using the Daubechies
length 8 wavelet basis and Fourier basis, respectively.

5. Conclusions

We have developed two structures for computing p-th
order nonlinear signal transformations. The transforma-
tions have an elegant interpretation in tensor spaces. It
is shown in [7] that the product node transformation pro-
duces an orthogonal decomposition in the tensor space and
is therefore very appropriate for estimation problems. The
summing node transformation can be computed using a
simple �lter bank structure particularly well-suited to fast

implementations. We have shown that the wavelet basis
provides an optimal framework for NSTs. We have fo-
cused on the classical Lp tensor spaces, but extensions to
more general settings may be possible using the results of

[4]. Application of the nonlinear signal transformation to
Volterra kernel identi�cation demonstrate the utility our
developments.

1The authors wish to thank Dr. Walter Frank of Universit�at
der Bundeswehr M�unchen for supplying the loudspeaker kernel
measurementsand Dr. Douglas Jones of the University of Illinois

for discussing the use of the JAM in this context.
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Figure 3. Estimates of quadratic kernel. (a) True kernel.
(b) Raw estimate, MSE=0.20. (c) Thresholded wavelet ex-
pansion, MSE=0.15. (d) Thresholded Fourier expansion,
MSE=0.40.
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