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ABSTRACT

Nonstationary chaotic behavior is not an
oxymoron. We present two methods for
capturing nonstationary chaos, then present a
few examples including biological signals, ocean
waves and traffic flow. The issue is of practical
interest because it is often useful to capture when
nonstationary events take place and it is desirable
to know over what periods a signal is stationary.

INTRODUCTION

A signal is stationary if there is no change in the
parameters of the underlying system. In the
frequency domain, nonstationary behavior is
often detected by comparing the power spectrum
within windows to the power spectrum of the
ensemble data. Because the Fourier coefficients
describe the system in the frequency domain, any
significant variation implies a change in
parameters and the system is considered
nonstationary.

Chaotic signals are inherently broad-band
and present many difficulties for linear
processing methods, not the least of which is that
changes in behavior may take place that are not
manifest in the Fourier spectrum. The broad-
band nature of stationary chaotic signals can give
them the illusion of being nonstationary. Using a
parameter change in the well studied chaotic
Lorenz system, we illustrate the point in figure 1
where the FFT after a parameter change is almost
unchanged.

F o r t ui t o u s ly ,  p h as e  s p a ce
reconstruction[1,2] allows us to define a
Euclidian space where a proxy for the full
multivariate system can be created. Several
robust metrics have been invented to classify
chaotic signals[3]. We have modified one of
these algorithms to operate within windows in a
manner similar to windowed FFTs to capture
parameter changes in chaotic systems. The basic
method of false nearest neighbors is used to
determine the embedding dimension (degrees-
of-freedom) required to embed the entire
attractor.

GLOBAL EMBEDDING DIMENSION

The minimum embedding dimension, dE, is the
degrees of freedom needed to describe the
system over the entire data set. This is also the
number of geometric dimensions that are needed
to fully reconstruct the attractor. 

The method of false nearest
neighbors[4] relies on the geometric basis for
the theorem of Mañè and Takens. If the
dimension is too low, points are projected down
into the lower dimension. As the dimension is
increased, attractors "unfold." Points on
trajectories that appear close in dimension d may
move to a distant region of the attractor in
dimension d+1. These are "false" neighbors in
d and the method measures the percentage of
false neighbors as d increases. Points that are
close in d are tallied, and the number of these
points that become widely separated in d+1 are



calculated.
The nearest neighbor to y(n) is yNN(n) =

(vNN(n),vNN(N+T),...,vNN(n+(d-1)T)). The
neighbor is false in dimension d if
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where Rd(n) is the Euclidian distance between a
point y(n) and its nearest neighbor yNN(n) and
Rtol is the criteria for declaring whether the
neighbors that are close in d are distant in d+1.

A second criterion is necessary because
the nearest neighbor may not necessarily be
“close.” The density of the vectors in space may
be low as the dimension increases. That is, as
dimensions are added the proportionate volume
occupied by the signal will decrease and the
distance to neighbors will increase. If the nearest
neighbor to a point is false but not close, then the
Euclidian distance in going to d+1 will be ~
2RA. So, the second criteria is
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where RA is the mean size of the attractor. A
nearest neighbor is false if either test fails.

For a noiseless signal, the number of
false neighbors becomes zero when the minimum
embedding dimension dE is reached. A noisy
signal drops off dramatically, but never reaches
zero. For SNRs as low as 6 to 10 dB, the
percentage of false neighbors drops below 1%
for d ≥ dE. The advantage of this technique is
that it is relatively robust to noise and data
corruption. Even is relatively high noise cases, it
will yield valid results when other methods
fail[3,4]. Experience has also shown that false
nearest neighbor testing will work for short data
sets. That is, we can apply it to short time series
and get valid results, a fact that we will use
shortly.

Thus, we can use the change in the
percentage of false neighbors as a clue that a
parameter change has taken place. For the Lorenz
system, the points where the parameter changes
take place is noticeable (x axis), Figure 2 (the
vertical axis is the percentage of false neighbors).
Each line is a trial dimension (d). In these

calculations, the embedding dimension at any
point is derived from the cross section of Figure
2 and remains constant across the nonstationary
events, despite the change in the relative number
of false neighbors. Figure 2 also gives some
clues as to why many gross metrics of chaotic
behavior, such as fractal dimension proxies, fail
to properly identify pathological events in real
data -- parameter changes can take place without
a change in dimension.

As a practical example, Figure 3 shows
Hurricane Camille as it overran an oil platform
in the Gulf of Mexico. The nature of the storm
remains relatively unchanged until window 300
(sample 75,000) when the worst part of the
storm hit the platform. Figure 4 shows traffic
flow counts on a freeway outside Houston,
Texas, USA. Although the indication is subtle,
a traffic jam slowly builds starting at sample
100 (this is really a time index).

LYAPUNOV EXPONENTS

The Lyapunov exponents describe the rate at
which close trajectories diverge. If one or more
Lyapunov exponents is positive, the trajectories
diverge, the system is unstable, and the
underlying system is chaotic[5].

The Lyapunov exponents may be
computed from the signal by a recursive QR
decomposition technique [6] from the Jacobian
of a function, F[y(n)], that maps points on the
orbit into points at the t time steps later, y(n+t)
= F[y(n)]. Typically, we do not know the map
and must estimate the Jacobian matrix of this
dynamical rule using state space and temporal
knowledge of the orbit points y(n).

The map describes nearby orbits and
how the distance between these neighbors
change over time. The distance between the
orbit and the r th neighbor at T0 is zr(n;0). The
corresponding distance at a time t later is: zr(n;t)
= F[y(n) + zr(n;0)] - F[y(n)].

A Taylor series expansion of F[• ]
contains the Jacobian of the underlying
dynamics as the first term of this expression.
The terms in the often ill-conditioned Jacobian
matrix are found by a least squares minimization
of the residuals in this formula.

The local Lyapunov exponents λi(x,L); i



= 1,2,...,d are the  eigenvalues e[Lλ i(x,L)] of the
Oseledec matrix,OSL(x,L) = [(DFL(x))T  •
DFL(x)]1/2L where DFL(x) is the product of L
Jacobian matrices DF(x). Theλi(x,L) become

independent of x as L →∞ by the multiplicative
ergodic theorem[20]. These are the global
Lyapunov exponents. For finite L, the local
Lyapunov exponents, which vary widely over
the attractor, measure the growth rate of
perturbations for L  samples. The local
dimension, dL, is determined by computing
distances in dE, but making local fits for DF(x)
in dL ≤ dE [7].

This method is notable because the
Lyapunov exponents can be calculated directly
from the data and works remarkably well on
short series. The primary consideration is
performing the calculations over enough starting
locations to achieve a good estimate.

In aggregate, the Lyapunov exponents
are useful mainly for classification of chaos and
deriving an estimate of the horizon over which
one can have confidence in predictions of future
state [8].

Because the Lyapunov exponents vary
over the attractor (that is, they vary with time),
tracking the evolution of the largest exponent (at
the limit L) provides clues as to the stability of
the underlying system as it evolves.

Using a method similar to that described
above, we track the change in the largest
Lyapunov exponent in data from a biological
system that is suddenly placed under stress,
Figure 5. In this case, the system comes to rest
until the stressing event starts at about 500
seconds. The event continues until 600 seconds
(the vertical bar). The largest Lyapunov exponent
increases rapidly during this event, then
fluctuates but holds the higher level for some
time, then begins a descent back toward some
new steady state region. The nonstationary event
is clearly identified by the change in the
exponent.

For this example, 25,000 samples were
used to form the attractor and the estimate of the
exponent was based on 2,000 starting locations
inside the window. For each point, the window
was moved 500 samples.

In this case, the evolution of the largest
Lyapunov exponent follows intuition about

chaos in biological systems. The increase in the
exponent might be expected for a “normal”
system because chaotic systems are robust.

In general, we find the method of the
windowed Lyapunov exponents provides better
results because they are more sensitive to
changes that occur within a given embedding
dimension.
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Figure 1. FFT of two segments of a
nonstationary chaotic signal.
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Figure 2. The windowed false nearest
neighbor across the same data. Note change
in the percentage of false neighbors at the
nonstationary transitions while the
embedding dimension remains constant.

Figure 3. Hurricane Camille.

Figure 4. Highway traffic flow.
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Figure 5. Biological system under stress.


