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ABSTRACT

The miniaturization of GSM handsets creates non-
linear acoustical echoes between the microphone and
the loudspeaker when signal level is high. Nonlinear
adaptive �ltering can tackle this problem but the com-
putational complexity has to be reduced by restrict-
ing the number of coe�cients introduced by nonlinear
models. This paper compares performances of di�erent
nonlinear models. In a �rst training stage we use the
OLS (Orthogonal Least Squares) identi�cation method
to �nd models using the fewest coe�cients along with a
good �tting accuracy. In a second �ltering stage these
parsimonious models are used to adaptively �lter the
GSM signals.

1. INTRODUCTION

The miniaturization of GSM handsets creates nonlin-
ear acoustical echoes between the microphone and the
loudspeaker when signal level is high. This nonlinear
phenomena are introduced by mechanical propagation
of vibrations along the handset. They are not to be
confused with linear echoes (like in a car) which are
processed bylinear adaptive �lters such as NLMS (Nor-
malised Least Mean square) [1].
The main items in the context of a nonlinear �ltering
are the choices of a suitable model and of the number
of coe�cients. You have to deal with the computation
complexity (induced by the number of coe�cients) and
the maximum normalized estimation error required by
the application constraints. Various authors [2] [3] have
studied nonlinear models for identi�cation of systems
or for adaptive nonlinear �ltering.
The goal of this paper is to compare performances of
di�erent nonlinear models using the following method-
ology :

� In a �rst training stage we use the OLS (Orthog-
onal Least Squares) identi�cation method [4] [5]

to �nd models using the fewest parameters along
with a good �tting accuracy.

� In a second �ltering stage these parsimoniousmod-
els are used to adaptively �lter the GSM signals
(cf Fig 1) .

Figure 1: Identi�cation and �ltering methodology

Four classes of models are used. Input and output
sequences are respectively denoted by x(n) and y(n),
their memory lengths are nx and ny.
The �rst model is a linear ARMA model. It is used as
a reference model.
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The second one is a Volterra model with a polynomial
order D and a memory length nx [6]. It is one of the
most popular nonlinear models, but is also one of the
most expensive because of the large number of coe�-
cients used.
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The following models are more recent, they generate
cross-terms between the input signal x and the output
signal y.
The third model is a Bilinear model [7] without exoge-
nous input.
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The last one is a NARMAX (Nonlinear Autoregessive
Moving Average with eXogenous inputs) model [8].
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Table 1 shows the di�erent models and their number
of coe�cients for nx = 10, ny = 10 andD = 3 (order of
nonlinearity for the Volterra model). The NARMAX
model has been restricted to an order 2 of nonlinearity
(no cubic terms), without exogenous input. It is clear
from table 1, that excepted the ARMA model, it is
necessary to decrease the number of coe�cients.

Model Coefficients Example

ARMA nx + ny 20

V olterra (D+ nx)!=(D!nx!) 285

Bilinear nx + ny + nxny 120

NARMAX nx + ny + nxny+ 230
n
2

x
+n2

y
+nx+ny

2

Table 1: Model's coe�cients

2. OLS IDENTIFICATION

The goal of the OLS identi�cation is to reduce the num-
ber of coe�cients using a criterion based on the energy

of the desired output. Departing from a basis P such
as

y =
NX

i=1

aiPi + � = [y(0); � � � ; y(L � 1)]t (1)

where L is the observation length, N is the number of
coe�cients and � is a observation noise; we construct
an orthogonal basis W such that :

ŷ =
MX

i=1

giWi (2)

ŷ is the estimate of y. To avoid numerical problems,
because N is typically large, OLS should select M or-
thogonal basis vectors with N � M . The energy of ŷ
is given by :

�r =
MX

i=1

g2iW
2

i (3)

At each step of the orthogonal decomposition of P , we
select the vector Wk which maximizes the individual
energy g2iW

2
i . This iterative process is stopped either

when �r < � (� is an a priori �xed threshold), or M =
N . After the OLS identi�cation stage, the normalized
estimation error of the model is estimated by :

Er =
(y � ~y)2

yty
(4)

where ~y is given for example for the ARMA model
by :

~y =
m1X

i=1

cix(n� �i) +
MX

j=m1+1

dj~y(n� 
j) (5)

where m1 is the reduced number of coe�cients in x,
and M �m1 is the reduced number of coe�cients in y
with their respective �i and 
j lags.
As a validation of the method, we apply this approach
to GSM handset signal. We can then compare model
performances.

3. MODEL SELECTION

The \Priestley test" [9] is used to compare the perfor-
mance of models. This statistical test for L samples is
given by :

g = L log(
�21
�22

) (6)



where �2, the residual variance, is de�ned by :

�2 =
1

L� 1 + d

LX

i=d+1

er(i)
2 (7)

with d the maximumlength memory used by the model
(d = max[nx; ny]), and er = y � ŷ. g is distributed on
�2q , where q is the di�erence in the number of parame-
ters of the two compared models. The second model
is accepted as a signi�cant improvement over the �rst
one if g exceeds its 95% con�dence level. This test is
used after the �ltering stage.

4. IDENTIFICATION OF GSM SIGNALS

Experiments have been conducted with a GSM hand-
set and a DSP (TMS 320C30) based acquisition board
for di�erent input signals (single frequency, white noise
and speech). x(n) represents the signal sent to the
loudspeaker and y(n) the signal received by the micro-
phone (cf Fig 1). When the input signal is a sinusoid
of frequency f0, the output y(n) has new frequencies
like 3 � f0, 5 � f0 and more. Figure 2 shows the FFT of
y(n) when f0 is equal to 300 Hz.
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Figure 2: FFT[y(n)] for a single frequency input

Now x(n) is a white noise sequence and has 7000
samples (L = 7000), but for the identi�cation step only
the �rst 1000 samples are used, the �ltering step use
the rest of samples. OLS identi�cation results are given
in Table 2.

The comparison of the model should be done by
considering the reduced number M of coe�cients and
the normalised estimation error (%Er). In this case
the ARMA, Bilinear and NARMAX models give the

Model nx ny N M %�r %Er

ARMA 40 10 50 26 95:01 12:08

V olterra 10 n 285 285 50:19 47:79

Bilinear 25 10 285 42 95:02 13:17

NARMAX 25 10 665 36 95 11:56

Table 2: OLS results

best results. However the �nal comparison will be done
after evaluation of the adaptive nonlinear �lter perfor-
mances.

5. NONLINEAR ADAPTIVE FILTERING

OF GSM SIGNALS

To compare these models, we adaptively �lter the sec-
ond part of the GSM signal (i.e. the remaining 6000
samples) with a suitable forgetting factor, and initialize
the �lter's coe�cients with the coe�cients estimated by
the OLS.
Figures 3 and 4 represent respectively the �ltered sig-
nal for the ARMA, Bilinear and NARMAX model and
the PSD of the outputs. The normalized estimation
error (%Er) is :

� 123; 30% for the ARMA model,

� 16:53% for the Bilinear model,

� 15:21% for the NARMAX model.

The PSD graphs con�rm that the ARMA model
does not have a good behavior in the �ltering stage. Al-
though the results of the OLS identi�cation stage seem
comparable for the three selected models, the adaptive
�ltering stage highlights the superiority of the Bilinear
and NARMAX model in this case.
The Priestley test can be used now to compare the
residual variance between the Bilinear and the NAR-
MAX model. The NARMAX model is selected by this
test, because the residual variance �2 is lower than the
residual variance of the Bilinear model.

6. CONCLUSION

Given these results, we can draw several conclusions :

� the Volterra model has been rejected, because
its coe�cient number remains too high after the
OLS identi�cation,
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Figure 3: Filtering results for the di�erent models

� the ARMA model has been rejected after the �l-
tering stage, because its performance is not good
enough,

� the Bilinear and the NARMAX models have the
same behaviour in this application. They have a
comparable normalized estimation error and after
the �ltering stage, their residual variance are sim-
ilar, �2Bilinear = 0:8079 and �2NARMAX = 0:7260,

� the \Priestley test" has selected the NARMAX
model, because this one has the best residual vari-
ance and the fewest coe�cients,

� the OLS identi�cation gives good reduction coef-
�cient number. For the Bilinear and NARMAX
model, this reduction takes the following value :

{ 85.26% for the Bilinear model,

{ 94.58% for the NARMAX model.

with reasonable �tting and �ltering accuracies.

This methodology,OLS identi�cation followed by adap-
tive nonlinear �ltering, presented in this paper has been
successfully applied of GSM signals for a white noise
input sequence. However the choice of the excitation
input seems very important and we are currently work-
ing on this problem.
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Figure 4: PSD of the outputs of various models
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