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ABSTRACT

The classical approach to designing �lters for systems

where system equations are linear and measurement equa-

tions are nonlinear is to linearise measurement equations,

and apply an Extended Kalman Filter (EKF). This re-

sults in suboptimal, biased, and often divergent �lters.

Many schemes proposed to improve the performance of the

EKF concentrated on better linearisation techniques, iter-

ative techniques and adaptive schemes. The improvements

achieved were marginal and often reduced the bias and di-

vergence problems but were far from optimal unbiased es-

timators. In this paper, we present a new approach to Op-

timal Nonlinear �ltering in linear system - nonlinear mea-

surements case. It is based on approximation of evolved

probability density functions using quasi-moments followed

by numerical evaluation of Bayes' conditional density equa-

tion.

1. INTRODUCTION

Nonlinear �ltering problems manifest in three di�erent

forms; linear system - nonlinear measurements, nonlinear

system - linear measurements, nonlinear system - nonlinear

measurements. This paper considers the design of Optimal

Nonlinear �lters in linear system - nonlinear measurements

case. The idea presented in this paper gains motivation

from the work done by stratonovich[5] and Culver[2] on

the signi�cance of quasi-moments for the approximation of
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Figure 1. The Block Diagram For The New Method Pro-

posed

probability density functions and by Challa and Faruqi [3]

on the investigation of numerical evaluation of Bayes the-

orem for nonlinear �ltering applications. The conventional

approaches using EKF are suboptimal due to the lineari-

sation of measurement equations. The linearisation based

methods were popular in literature not only because the

complete analytical solution for Bayes' conditional density

equation is not possible (except in few special cases) but also

because the present days computing power was not avail-

able when earlier attempts were made to solve this problem.

In view of the tremendous progress taking place in the com-

puter industry, it is deemed timely to undertake numerical

approaches where it is di�cult to obtain analytical solution.

Hence the numerical solution of Bayes' conditional density

is suggested in this paper.

In the case of linear system - nonlinear measurements

problem, the evolution of central moments are governed by

relatively simple equations compared to nonlinear systems

but the correction of these moments is extremely di�cult.

This is because the evolution of lower order moments in

linear systems does not depend on higher order moments

but the correction of these moments does depend on the

higher order moments. The number of higher order mo-

ments needed depends on the degree of measurement non-

linearity. This simpli�cation of evolving central moments

in linear systems enables one to evolve the probability den-

sity function (PDF) using moments as opposed to using

Fokker-Planck-Kolmogorov (FPK) forward di�usion equa-

tion in nonlinear systems which is extremely di�cult to

solve. The evolved central moments can be used to eval-

uate the quasi-moments [5, 4] and �nd an approximation

of the evolved probability density function. The accuracy

of this approximation depends on the error bounds toler-

ated by the particular application in consideration. This

method is of great importance in target tracking and nav-

igation problems where the system dynamics, expressed in

Cartesian coordinate system, are linear and measurements

are nonlinear.

2. NEW FILTERING ALGORITHM

The block diagram in �gure 1 summerises the new �ltering

algorithm. The key point to note is that in any linear sys-

tem, moment evolution equations of certain order doesn't

depend on the moment evolutions of higher order (unlike

the moment evolutions in any nonlinear system). This en-

ables one to �nd a nearly optimal nonlinear �lter in a linear



system - nonlinear measurements case. The algorithm con-

verges to optimality with the increase in the number of sig-

ni�cant quasi-moments considered. This �ltering algorithm

reduces to a Kalman �ltering algorithm in a linear system

- linear measurement case as the quasi-moments evaluated

would be zero for all orders indicating that the densities

remain normal before and after correction.

Consider a continuous time linear stochastic dynamic sys-

tem(SDS) described by

_X(t) = F (t)X(t) +G(t)�(t) t � t0 (1)

where X(t) = [x1; x2; : : : ; xn] represents the state vector of

the system at any time t. F (t) is a linear vector valued

function with real components and G(t) is a n � m real

matrix and �(t) is a white Gaussian noise process, �(t) �
N(0; Q(t)). Observations Y (tk) of this system are taken at

discrete time instants tk :

Y (tk) = H(X(tk); tk) + �k; k = 1; 2; : : :

tk+1 > tk � t0 (2)

where H(X(tk); tk) is a non-linear function of the observ-

able states of the SDS and �k � N(0; Rk). The moment

evolution equations are given by lemma 6.1 in [1]. When the

equations in the referred lemma are expanded for a linear

system they result in matrix Riccati type equations which

can be solved recursively. In a single dimension case, the

evolution equation for the nth order central moment is de-

rived in the next section.

3. DERIVATION OF MOMENT EVOLUTION

EQUATIONS

De�ning the nth order central moment by

Cn = Ef(x� x̂)
ng (3)

where x̂ implies Efxg. By expanding this in accordance

with binomial series, we have

Cn = Efnc0x
n
+ nc1x

n�1
x̂+ nc2x

n�2
(x̂)

2
+ : : :

+ ncrx
n�r

(x̂)
r
+ : : :+ ncn x̂

ng (4)

which implies that

Cn = nc0cxn + nc1
[xn�1x̂+ nc2

[xn�2(x̂)2 + : : :

+ ncr
[xn�r(x̂)

r
+ : : :+ ncn x̂

ng (5)

Where

ncr =
n!

r!(n� r)!
(6)

For a general single dimensional linear system represented

by

_x = ax+ � (7)

the moment evolution equations are obtained by di�erenti-

ating the equation 5 and by using lemma 6.1 from [1] one

obtains
dcxn
dt

= nacxn + q

2
(n� 1)n[xn�2 (8)

and also by using

cxn = (x̂)
n
+ nc1 (x̂)

n�1
\x� x̂+ nc2 (x̂)

n�2
\(x� x̂)2 +

: : : ncr (x̂)
n�r
\(x� x̂)r + : : :+ ncn

\(x� x̂)n (9)

being equivalent to

cxn = (x̂)
n
+ nc1(x̂)

n�1
C1 + nc2(x̂)

n�2
C2 +

: : : ncr (x̂)
n�r

Cr + : : : + ncnCn (10)

in 5 one obtains

dCn

dt
= naCn +

q

2
[n(n� 1)[xn�2 + (n� 1)(n� 2)[xn�3 +

: : : +(n� r)(n� r � 1)\xn�r�2 + : : :+ 6x̂+ 2] (11)

For illustration purposes the evolution equations of �rst

seven central moments are provided.

dC1

dt
= aC1 (12)

dC2

dt
= 2aC2 + q (13)

dC3

dt
= 3aC3 + q(3C1 + 1) (14)

dC4

dt
= 4aC4 + q(6C

2
1 + 3C1 + 1) (15)

dC5

dt
= 5aC5 + q(10C

3
1 + 30C1C2 + 10C3 + 6C

2
1 + 3C1 + 1)

(16)

dC6

dt
= 6aC6 + q(15C

4
1 + 60C1C3 + 90C

2
1C2 + 15C4

+ 10C
3
1 + 30C1C2 + 10C3 + 6C

2
1 + 3C1 + 1)(17)

dC6

dt
= 6aC6 + q(21(c

5
1 + 1C

2
1C3 + 10C

3
1C2 + 5C1C4 + C5

+ 15C
4
1 + 60C1C3 + 90C

2
1C2 + 15C4

+ 10C
3
1 + 30C1C2 + 10C3 + 6C

2
1 + 3C1 + 1) (18)

The evolved central moments are then used to �nd the

quasi-moments which in turn are used to �nd the approxi-

mate PDF. The evaluation of quasi-moments from central

moments and the approximation of evolved density is con-

sidered in the next section.

4. APPROXIMATION OF PDF USING

QUASI-MOMENTS

The suggested approximation to probability density func-

tion is based on the work done by Stratonovich [5, 4]. The

interesting thing that is stated in their work is that any

probability density can be represented by a Gaussian den-

sity times a sum of kth order n dimensional Hermite polyno-

mials. Since we are dealing with single dimension systems

we require only kth order single dimensional Hermite poly-

nomials.



The derivation of relation between quasi-moments and

central moments involves the expansion of the ratio of char-

acteristic functions in Maclauren's series. The details are

given in [2]. The approximation of PDF is simply a product

of Gaussian density with same mean and variance as that

of the true density with the Hermite polynomials.

p(X; tkjY
�

tk
) = pg(X; tkjY

�

tk
)[1 +

1X

k=3

(�1)k

k!
qknhkn ] (19)

where qkn is the kth order n dimensional quasi-moment and

hkn is the kth order n dimensional Hermite polynomial. The

Hermite polynomials are given by

hk =
(�1)k

pg

@kpg

@xk
(20)

where pg is the Gaussian density having the same mean and

variance as that of p the true density. The details of evalu-

ation of these are well elucidated in [2, 5, 4]. The Hermite

polynomials upto order seven are given in this paper for

illustration purposes. De�ning

pg =
1p

2�(�)2
exp

�1

2

(x�Efxg)2

(�)2
(21)

and

T =
(x�Efxg)

(�)2
(22)

then we note that

@pg

@x
= �pgT (23)

@2pg
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2 � 1�
2
) (24)
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@x3
= pg(�T

3
+

3T

�2
) (25)

@4pg

@x4
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T 2

�2
+

3

�4
) (26)

@5pg

@x5
= pg(�T

5
+

10T 3

�2
�

15T

�4
) (27)

@6pg

@x6
= pg(T

6 �
15T 4

�2
+

45T 2

�4
�

15

�6
) (28)

@7pg

@x7
= pg(�T

7
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21T 5

�2
�

105T 3

�4
+

105T
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) (29)

These terms involving the partial derivatives of Gaussian

density are useful in getting the Hermite polynomials. It

remains to �nd out the quasi-moments in terms of the cen-

tral moments. The derivation of these are detailed in [2].

The �rst seven quasi moments in terms of the �rst seven

central moments are given for illustration purposes.

The �rst two quasi-moments are always zero. The third

quasi-moment is equal to third central moments. The quasi-

moments above three are

q4 = C4 � 3C
2
2 (30)

q5 = C5 � 10C2C3 (31)

q6 = C6 � 15C2q4 � 15C
3
2 � 10C

2
3 (32)

q7 = C7 � 21C2q5 � 105C
2
2C3 � 35C3q4 (33)

We derive here the actual equations that are used while

considering upto seventh order quasi- moment, as this was

found adequate in the problems considered in this paper.

Interested researcher may follow similar steps for obtaining

approximations incorporating higher order quasi-moments.

This approximated PDF is used in the corrector in nu-

merical evaluation of the Bayes' conditional density. At

an observation (at tk) the conditional density satis�es the

di�erence equation

p(X; tkjYtk ) =
p(Ytk jX)p(X; tkjY

�

tk
)R

p(Ytk jX)p(X; tkjY
�

tk
)

(34)

respectively, where p(YkjX) is given by

p(YkjX) =
1

(2�)
m

2

�e�
1

2
[Yk�H(X;tk)]

TR
�1

k
[Yk�H(X;tk)] (35)

As the functional form of the evolved PDF varies with time,

the analytical solution for the Bayes' conditional density

equation is extremely di�cult to obtain in a recursive esti-

mation scheme. This motivates the use of numerical meth-

ods to solve this equation. The conditional PDF obtained is

used to obtain the moments and quasi-moments. The quasi-

moments of increasing orders are evaluated and the di�er-

ence between the true PDF and the approximated PDF is

compared with an arbitrarily small value �. In the single di-

mensional case, if the quasi-moments of, say, order n leads

to an error less than �, the evaluation of moments of or-

ders higher than n is stopped. The evaluated moments are

fed back to the predictor for further prediction. The �l-

ter approaches optimality with the increase in the number

quasi-moments considered. A typical approximation pro-

cess is given �gures 2, 3 and 4.
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Figure 2. The approximate probability using 3 quasi-

moments

The true PDFs and their associated approximations

clearly show how the approximate PDFs improve depending

on the number of quasi-moments considered. In the course

of implementation of this method, some numerical problems

were encountered. Some times the approximated density

attained negative values. We forced the values to become

zero when it was becoming negative and renormalised the

density to maintain the area under the density unity.

5. SIMULATION AND RESULTS

The proposed method and EKF are applied on a single di-

mensional non-linear system with the system dynamics de-
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Figure 3. The approximate probability using 5 quasi-

moments
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Figure 4. The approximate probability using 7 quasi-

moments

scribed by
_X(t) = �0:5X(t) + �(t) (36)

and the measurements given by Z(t) = X3(t) + �(t) in one

simulation and Z(t) = cos(X(t)) + �(t) in the other. In
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Figure 5. The error plot from simulations with polynomial

measurement nonlinearity

the current implementation the system noise varianceQ and

system measurement variance R are set to 0.001 and 0.005

respectively. The �gures 5 and 6 clearly show the superi-

ority of the proposed method over EKF in terms of faster

convergence and bias removal in linear system - nonlinear

measurements case. It has been observed that as the sys-

tem noise increased the performance of both these �lters

become similar. This is due to the fact that the presence of
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Figure 6. The error plot from simulations with polynomial

measurement nonlinearity

system noise occludes the nonlinearities of the system.

6. CONCLUSIONS

A new approach to nonlinear �ltering without resorting to

linearisation of measurement equations is presented in this

paper. The evolution equations of nth order central mo-

ments along with their relationship to quasi-moments are

presented. The potential of the method is demonstrated on

a single dimensional system.
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