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ABSTRACT

This paper compares the eigenstructure and modulation al-
gorithms, which are used for two-channel lossless FIR �lter
optimization. We study the e�ects of eigenvalue separation
of the input covariance matrix and the step size on their con-
vergence behavior. First, we show that the convergence rate
of two algorithms increases as the separation of eigenvalues
of the covariance matrix increases. The modulation algo-
rithm (MA) converges more rapidly than the eigenstructure
one (EA) because of its better eigenvalue separation. Sec-
ond, the necessary condition for which the two algorithms
converge is derived. Simulations are presented which sup-
port th analysis.

1. INTRODUCTION

Adaptive algorithms for the two-channel lossless FIR �l-
ters (Fig. 1) optimization have recently been developed in
various real-time applications such as wavelet analysis and
data compression [1, 2, 3, 4]. These update algorithms seek
recursively the rotation angles f�kg

M�1
k =0 such that the vari-

ance of the output E[y22(n)] is \small" or minimized with
respect to some prede�ned criterion. Comparatively few re-
sults are available, however, characterizing the convergence
properties, which are characterized by two factors: con-
vergence behavior and the steady-state mean-square error
(MSE).

In [3] two eigenstructure algorithms|eigenstructure and
modulation|are proposed which o�er many advantages
over stochastic gradient algorithms [1, 2], including compu-
tational simplicity and freedom from local minima. How-
ever, the nonlinearity and non-gradient nature of these t-
wo algorithms render their performance analysis a di�cult
task. Ordinary di�erential equation (ODE) analysis of an
adaptive algorithm is by now a well established subject and
has already been used for assessing the performance anal-
ysis of various adaptive algorithms[5, 6, 7]. In this paper,
we shall also use this tool to analyze the performance of the
above mentioned algorithms.

Speci�cally, we shall compare adaptive lossless FIR �l-
ter banks governed by the two algorithms proposed in [3]
in terms of convergence behavior. Theorectical analysis
and computer simulations are conducted, leading to use-
ful guidelines for selecting the best algorithm. Performance
analyses of the two algorithms in the case of stationary in-
puts lead to the following conclusion. With appropriate
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Figure 1. Two-channel lossless �lter bank

choice of the adaptation parameter, the convergence rate
of both algorithms increases as the spread of eigenvalues of
the input covariance matrix increases. The modulation al-
gorithm converges more rapidly than the eigenstructure one
due to its better eigenvalue separation. A necessary conver-
gence condition for both algorithms is derived. The paper
is organized as follows. Section 2 is concerned with the
problem formulation and the assumptions used throughout
the paper. Section 3 studies the in
uence of the eigenvalue
spread of the covariance matrix on the algorithms and de-
termines the stepsize � for which the algorithms converge.
Section 4 presents simulation results for validating our the-
orectical analysis. Conclusion are drawn in Section 5.

2. PROBLEM FORMULATION

Fig. 1 is a block diagram of the two-channel lossless FIR
�lter bank, which may be described as
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where x(�) = [x1(�); � � � ; xM(�)]T is the state vector, u(�) =
[u1(n); u2(n)]

T is the input vector, and y(�) = [y1(�); y2(�)]
T

is the ouput vector.
At each iteration n, the eigenstructure algorithm updates

�(�) = [�0(�); � � � ; �M�1(�)]
T , the vector of rotation angles,

according to

�(n+ 1) = �(n)� �y2(n)�(n)
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where � is a constant step-size; and � = diag [
1; � � � ; 
M ]
with 
M = 1; 
k(n) = 
k+1(n) cos �k(n).
The eigenstructure algorithm does not converge if the

odd-indexed terms of the input autocorrelation are negligi-
ble compared to the even-indexed terms. For this reason,
we suggested an alternative: the modulation algorithm. It
is driven exclusively by the odd-indexed terms of the input
autocorrelation:

�(n+ 1) = �(n)� ��(n) (3)
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where x̂(n + 1); ŷ2(n); ŷ1(n) are obtained from a duplicate
structure to Fig. 1, but driven by a modulated version of
the input:

û(m) =
�

u(2n) �u(2n� 1) u(2(n� 1)) � � �
�

The vector �(n) is assumed to be randomly time-varying.
Suppose �� is the the solution given by the algorithm (2)
or (3); the angle error between �(n) and �� is denoted by

"(n)
�
= �(n)��� (4)

The following assumptions are used throughout the paper:

1 The sequences fu(n)g and f"(n)g are mutually inde-
pendent;

2 f"(n)g is a stationary sequence of independent zero
mean vectors;

3 The sequence fu(n)g is stationary, zero mean, and the

covariance matrix R
�
= E

�
u(n)uT (n)

�
is positive de�-

nite.

3. CONVERGENCE BEHAVIOR

The transient phenomena during convergence can be stud-
ied using the ODE method as a by-product, as mentioned
in the Introduction. Generally, one associates an adaptive
algorithm with a corresponding ODE by checking a num-
ber of conditions based on which averaging can take place.
Then the behavior of the adaptive algorithm can be predict-
ed, in an average sense, by the solutions of the associated
ODE. In doing so, one converts a stochastic discrete time
process into its averaged version, a deterministic continuous
process, which is easier to analyze.
For slow adaptation, the convergence properties of the

engienstructure algorithm (2) can be described by the solu-
tion �(t) of an associated ODE of the form
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For a su�ciently small but constant step size �, �(n) con-
verges in probability to a convergent point �� of (2) if and
only if this same value of �� is an attractive stationary
point of the di�erential equations (5).
The modulation algorithm (3) can likewise be studied by

using its ODE, as given by
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Using Kg(�) to denote K(�) in (6) or K0(�) in (7), we
observe that (5) and (7) assume the common form

d�(t)

dt
= ��(�)Q1(�)Kg(�)q

T
2 (�)

A stationary point �� of the algorithms, in which the right
hand side of the above equation vanishes, is attained if and
only is the column vector Kg(��)q

T
2 (��) is orthogonal to

the M rows of Q1(��),i.e.,

Kg(��)q
T
2 (��) = �(Kg(��))q

T
2 (��) (8)

Simulations indicate that � = �min is always obtained. This
is why we call (2) and (3) eigenstructure algorithms. Unfor-
tunately, about the convergence behavior, no general result
seems to be avaible for either algorithm because of their
nonlinearity in the rotation angles. The convergence be-
havior of these algorithms is determined by two factors: (1)
the step-size parameter �, and (2) the covariance matrix of
the input. We shall study the in
uence of these factors by
way of simulation examples.

3.1. In
uence of the Eigenvalues Spread of the Co-

variance Matrix

First, we examine the e�ect of the eigenvalue separation of
the covariance matrix K(�) in (6) and K0(�) in (7) on the
convergence speed of the algorithms (2) and (3), respec-
tively, for a �xed step size �. As has been shown above,
the eigenstructure algorithms (2) and (3) consist in seeking
the vector �� such that it satis�es an eigenstructure equa-
tion (8). In fact, the decomposition (8) cannot be calculated
exactly because of round o� error in computing, therefore
we shall investigate how the eigenvectors are a�ected by
perturbation. We have the following property:

Property 1 Assume that the covariance matrix Kg(��) 2
C(M+1)�(M+1) has distinct eigenvalyes �1 > � � � > �M+1

and F 2 C(M+1)�(M+1) satis�es k F k2= 1. If the matrix

Kg(��) is perturbed by a small amount �F , the sensitivity

qT2 (��) is in the form:

q
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where qT2;�� (0) = qT2 (��), k xi(�) k2= 1; k yi(�) k2= 1; i =
1 :M .

Thus the sensitivity of qT2;�� (�) depends upon eigenvalue
sensitivity and the separation of �M+1(Kg(��)) from the
other eigenvalues. For a derivation of this property, see
Golub and Van Loan [8, pp344-345]. Suppose that � is
a simple eigenvalue of Kg(��) and that x and y satisfy
Kgx = �x and yHKg = yH� with k x k2=k y k2= 1. Using
classical results from function theory, it can be shown that
in a neighborhood of the origin there exist di�erentiable
x(�) and �(�) such that

(Kg + �F )x(�) = �(�)x(�) k F k2= 1 k x(�) k2= 1

where �(0) = � = �(Kg(��)) and x(0) = x(��). As
Kg(��) has distinct eigenvalues, a continuity argument en-
sures us that for all � in some neighborhood of the origin
we have

(Kg(��) + �F )xi(�) = �i(�)xi(�) k xi(�) k2= 1

yi(�)
H(Kg(��) + �F ) = �i(�)yi(�)

H k yi(�) k2= 1
i = 1 : (M + 1)

where each xi(�), yi(�) and �i(�) is di�erentiable. Finally,
we have the following result:

xk(�) � xk(0) +
X

i=1(i6=k)

yHi Fxk

(�k � �i)yHi xi
xi + o(�2)

As the two algorithms give us qT2 (��) = xM+1(0), we ob-
tain naturally the property above. This property shows that
the convergence speed of both eigenstructure algorithms is
proportional to the separation of eigenvalues of a covari-
ance matrix. The modulation algorithm in general has bet-
ter eigenvalue separation than the eigenstructure one. This
is con�rmed by more rapid convergence in our simulations
compared to the latter.

3.2. Step Size Selection

Now we study the e�ect of the step-size � on the conver-
gence behavior of the algorithms. For the algorithms to be
stable, we must choose � such that two types of convergence
are satis�ed:

1 Convergence in the mean, which means that the ex-
pectation of the vector �(n) approaches the stationary
point �� as the number of iterations n tends to in�nity;

2 Convergence in the mean square, which means that the
asymtotic values of E

�
"(n)"(n)T

�
of the mean-squared

error is �nite.

To derive the �rst two moments of the estimate of the vector
�(n), it is more convenient to work with the angle error (4).
Knowledge of the �rst two moments of the angle error "(n)
is important for establishing conditions that ensure conver-
gence of the algorithms. Obtaining analytic expression for
E
�
"(n)"(n)T

�
is di�cult, though. Therefore, we examine

only the �rst moment of "(n), i.e., the expectation E ["(n)],
to determine the necessary condition of convergence to ap-
ply with the assumptions of Section 2. The method we shall

use is based on local linearization about a stationary point
��.
To obtain simpler expressions, we summarize the algo-

rithms (2) and (3) in the general form

�(n+ 1) = �(n)� �H(�(n);x(n)) (10)

Subtracting the stationary point vector �� from both sides
of the above equation and using the de�nition of equa-
tion (4), we can rewrite the algorithm (10) in terms of the
angle error as follows:

"(n+ 1) = "(n)� �H(�� + "(n);x(n)) (11)

Suppose that "(n) is su�ciently small such that the locally
linearized model

H(�� + "(n);x(n)) = H(��;x(n)) +

M�1X
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applies. We can then express equation (11) as

"(n+ 1) = "(n)� �
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This can be rewritten as

"(n+ 1) = (I � �
@H(�;x(n))

@�
j��)"(n)� �H(��;x(n))

(12)
As a consequence of our assumptions, the angle error vector
"(n) is independent of fu(n)g. Hence taking the mathemat-
ical expectation of both sides of equation (12), we get

E("(n+1)) = E(I��
@H(��;x(n))

@�
)E("(n))��E(H(��;x(n)))

(13)
If we denote

A = E

�
@H(�;x(n))

@�

�
j�=��

which depends only on the input fu(n)g at a stationary
point �� and

E [H(��; x(n))] = 0;

we may then simplify Eq. (13) as follows:

E ["(n+ 1)] = (I � �A)E ["(n)]

We therefore deduce the necessary condition that the two
algorithms converge:

Property 2 The transient component of � does not exhibit

oscillations, if the step-size parameter � satis�es

0 < � <
2PM�1

i=0
�i(A)

where the �i; i = 0; � � � ;M � 1 are the eigenvalues of the

matrix A and M is the number of rotation angles.

In the following, we shall present simulations for verifying
these propreties.
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Figure 2. Trajectories of trois rotation angles of EA

(left) and MA (right), �(R) = 3
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Figure 3. Trajectories of trois rotation angles,

�(R) = 10

4. SIMULATION RESULTS

We present the simulation results for examining the tran-
sient behavior of these two algorithms applied to a predictor
that on a real-valued autoregressive (AR) process which is
described by the second-order di�erence equation

u(n) + a1u(n� 1) + a2u(n� 2) = v(n)

where the sample v(n) is drawn from a white-noise process
of zero mean and variance �v. The transient behavior of
two algorithms is evaluated under two scenarios:

� Varying the eigenvalue separation of input fu(n)g for
a �xed step size �

� Varying the step-size parameter � for a �xed eigenvalue
separation of input

In the �rst experiment, the step size � is �xed at 0:3, and
the evaluations are made for two sets of AR parameter-
s following (a1 = �0:9750; a2 = 0:95; �(R) = 3); (a1 =
�1:5955; a2 = 0:95; �(R) = 10). Figures (2) and (3) show
the mean rotation angle evolutions for the two choices of in-
puts. We observe that the simulations con�rm that well sep-
arated eigenvalues leads to rapid convergence, while poor-
ly separated eigenvalues lead to slow convergence, and also
that the modulation algorithm converges more rapidly than
the eigenstructure one.

In the second experiment, the step size � is varied for the
input �(R) = 10. In particular, we examine the transient

behavior of EA for �max = 2=
PM+1

i=1
(A) = 0:3906 and MA

for �max = 0:5. The corresponding results are shown in the
left of Fig. 4 for EA and in the right of Fig. 4 for MA. We ob-
serve that when � approaches the value �max, the transient
behavior of two algorithms begins to exhibit oscillations.
These simulations support the theorectical analyses.
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Figure 4. EA (left) for � = 0:4, MA (right) for � = 0:5

5. CONCLUSION

In this paper, we have analyzed and compared two algo-
rithms in terms of the convergence behavior. Based on both
analysis and simulation we can see that the convergence rate
of the two algorithms increases as the separation of eigen-
values of the input covariance matrix increases. The mod-
ulation algorithm has a more rapid convergence than the
eigenstructure one due to its better eigenvalue separation.
The necessary condition for the algorithms to converge is
derived. Further study of the asymptotic covariance prop-
erties of the �lter coe�cients is presently underway.
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