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ABSTRACT

This paper compares the eigenstructure and modulation al-
gorithms, which are used for two-channel lossless FIR �lter
optimization. We study the e�ects of eigenvalue separation
of the input covariance matrix and the step size on their con-
vergence behavior. First, we show that the convergence rate
of two algorithms increases as the separation of eigenvalues
of the covariance matrix increases. The modulation algo-
rithm (MA) converges more rapidly than the eigenstructure
one (EA) because of its better eigenvalue separation. Sec-
ond, the necessary condition for which the two algorithms
converge is derived. Simulations are presented which sup-
port th analysis.

1. INTRODUCTION

Adaptive algorithms for the two-channel lossless FIR �l-
ters (Fig. 1) optimization have recently been developed in
various real-time applications such as wavelet analysis and
data compression [1, 2, 3, 4]. These update algorithms seek
recursively the rotation angles f�kg

M�1
k =0 such that the vari-

ance of the output E[y22(n)] is \small" or minimized with
respect to some prede�ned criterion. Comparatively few re-
sults are available, however, characterizing the convergence
properties, which are characterized by two factors: con-
vergence behavior and the steady-state mean-square error
(MSE).

In [3] two eigenstructure algorithms|eigenstructure and
modulation|are proposed which o�er many advantages
over stochastic gradient algorithms [1, 2], including compu-
tational simplicity and freedom from local minima. How-
ever, the nonlinearity and non-gradient nature of these t-
wo algorithms render their performance analysis a di�cult
task. Ordinary di�erential equation (ODE) analysis of an
adaptive algorithm is by now a well established subject and
has already been used for assessing the performance anal-
ysis of various adaptive algorithms[5, 6, 7]. In this paper,
we shall also use this tool to analyze the performance of the
above mentioned algorithms.

Speci�cally, we shall compare adaptive lossless FIR �l-
ter banks governed by the two algorithms proposed in [3]
in terms of convergence behavior. Theorectical analysis
and computer simulations are conducted, leading to use-
ful guidelines for selecting the best algorithm. Performance
analyses of the two algorithms in the case of stationary in-
puts lead to the following conclusion. With appropriate
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Figure 1. Two-channel lossless �lter bank

choice of the adaptation parameter, the convergence rate
of both algorithms increases as the spread of eigenvalues of
the input covariance matrix increases. The modulation al-
gorithm converges more rapidly than the eigenstructure one
due to its better eigenvalue separation. A necessary conver-
gence condition for both algorithms is derived. The paper
is organized as follows. Section 2 is concerned with the
problem formulation and the assumptions used throughout
the paper. Section 3 studies the inuence of the eigenvalue
spread of the covariance matrix on the algorithms and de-
termines the stepsize � for which the algorithms converge.
Section 4 presents simulation results for validating our the-
orectical analysis. Conclusion are drawn in Section 5.

2. PROBLEM FORMULATION

Fig. 1 is a block diagram of the two-channel lossless FIR
�lter bank, which may be described as
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where x(�) = [x1(�); � � � ; xM(�)]T is the state vector, u(�) =
[u1(n); u2(n)]

T is the input vector, and y(�) = [y1(�); y2(�)]
T

is the ouput vector.
At each iteration n, the eigenstructure algorithm updates

�(�) = [�0(�); � � � ; �M�1(�)]
T , the vector of rotation angles,

according to

�(n+ 1) = �(n)� �y2(n)�(n)
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where � is a constant step-size; and � = diag [1; � � � ; M ]
with M = 1; k(n) = k+1(n) cos �k(n).
The eigenstructure algorithm does not converge if the

odd-indexed terms of the input autocorrelation are negligi-
ble compared to the even-indexed terms. For this reason,
we suggested an alternative: the modulation algorithm. It
is driven exclusively by the odd-indexed terms of the input
autocorrelation:

�(n+ 1) = �(n)� ��(n) (3)
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where x̂(n + 1); ŷ2(n); ŷ1(n) are obtained from a duplicate
structure to Fig. 1, but driven by a modulated version of
the input:

û(m) =
�

u(2n) �u(2n� 1) u(2(n� 1)) � � �
�

The vector �(n) is assumed to be randomly time-varying.
Suppose �� is the the solution given by the algorithm (2)
or (3); the angle error between �(n) and �� is denoted by

"(n)
�
= �(n)��� (4)

The following assumptions are used throughout the paper:

1 The sequences fu(n)g and f"(n)g are mutually inde-
pendent;

2 f"(n)g is a stationary sequence of independent zero
mean vectors;

3 The sequence fu(n)g is stationary, zero mean, and the

covariance matrix R
�
= E

�
u(n)uT (n)

�
is positive de�-

nite.

3. CONVERGENCE BEHAVIOR

The transient phenomena during convergence can be stud-
ied using the ODE method as a by-product, as mentioned
in the Introduction. Generally, one associates an adaptive
algorithm with a corresponding ODE by checking a num-
ber of conditions based on which averaging can take place.
Then the behavior of the adaptive algorithm can be predict-
ed, in an average sense, by the solutions of the associated
ODE. In doing so, one converts a stochastic discrete time
process into its averaged version, a deterministic continuous
process, which is easier to analyze.
For slow adaptation, the convergence properties of the

engienstructure algorithm (2) can be described by the solu-
tion �(t) of an associated ODE of the form
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For a su�ciently small but constant step size �, �(n) con-
verges in probability to a convergent point �� of (2) if and
only if this same value of �� is an attractive stationary
point of the di�erential equations (5).
The modulation algorithm (3) can likewise be studied by

using its ODE, as given by
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Using Kg(�) to denote K(�) in (6) or K0(�) in (7), we
observe that (5) and (7) assume the common form

d�(t)

dt
= ��(�)Q1(�)Kg(�)q

T
2 (�)

A stationary point �� of the algorithms, in which the right
hand side of the above equation vanishes, is attained if and
only is the column vector Kg(��)q

T
2 (��) is orthogonal to

the M rows of Q1(��),i.e.,

Kg(��)q
T
2 (��) = �(Kg(��))q

T
2 (��) (8)

Simulations indicate that � = �min is always obtained. This
is why we call (2) and (3) eigenstructure algorithms. Unfor-
tunately, about the convergence behavior, no general result
seems to be avaible for either algorithm because of their
nonlinearity in the rotation angles. The convergence be-
havior of these algorithms is determined by two factors: (1)
the step-size parameter �, and (2) the covariance matrix of
the input. We shall study the inuence of these factors by
way of simulation examples.

3.1. Inuence of the Eigenvalues Spread of the Co-

variance Matrix

First, we examine the e�ect of the eigenvalue separation of
the covariance matrix K(�) in (6) and K0(�) in (7) on the
convergence speed of the algorithms (2) and (3), respec-
tively, for a �xed step size �. As has been shown above,
the eigenstructure algorithms (2) and (3) consist in seeking
the vector �� such that it satis�es an eigenstructure equa-
tion (8). In fact, the decomposition (8) cannot be calculated
exactly because of round o� error in computing, therefore
we shall investigate how the eigenvectors are a�ected by
perturbation. We have the following property:

Property 1 Assume that the covariance matrix Kg(��) 2
C(M+1)�(M+1) has distinct eigenvalyes �1 > � � � > �M+1

and F 2 C(M+1)�(M+1) satis�es k F k2= 1. If the matrix

Kg(��) is perturbed by a small amount �F , the sensitivity

qT2 (��) is in the form:
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where qT2;�� (0) = qT2 (��), k xi(�) k2= 1; k yi(�) k2= 1; i =
1 :M .

Thus the sensitivity of qT2;�� (�) depends upon eigenvalue
sensitivity and the separation of �M+1(Kg(��)) from the
other eigenvalues. For a derivation of this property, see
Golub and Van Loan [8, pp344-345]. Suppose that � is
a simple eigenvalue of Kg(��) and that x and y satisfy
Kgx = �x and yHKg = yH� with k x k2=k y k2= 1. Using
classical results from function theory, it can be shown that
in a neighborhood of the origin there exist di�erentiable
x(�) and �(�) such that

(Kg + �F )x(�) = �(�)x(�) k F k2= 1 k x(�) k2= 1

where �(0) = � = �(Kg(��)) and x(0) = x(��). As
Kg(��) has distinct eigenvalues, a continuity argument en-
sures us that for all � in some neighborhood of the origin
we have

(Kg(��) + �F )xi(�) = �i(�)xi(�) k xi(�) k2= 1

yi(�)
H(Kg(��) + �F ) = �i(�)yi(�)

H k yi(�) k2= 1
i = 1 : (M + 1)

where each xi(�), yi(�) and �i(�) is di�erentiable. Finally,
we have the following result:

xk(�) � xk(0) +
X

i=1(i6=k)

yHi Fxk

(�k � �i)yHi xi
xi + o(�2)

As the two algorithms give us qT2 (��) = xM+1(0), we ob-
tain naturally the property above. This property shows that
the convergence speed of both eigenstructure algorithms is
proportional to the separation of eigenvalues of a covari-
ance matrix. The modulation algorithm in general has bet-
ter eigenvalue separation than the eigenstructure one. This
is con�rmed by more rapid convergence in our simulations
compared to the latter.

3.2. Step Size Selection

Now we study the e�ect of the step-size � on the conver-
gence behavior of the algorithms. For the algorithms to be
stable, we must choose � such that two types of convergence
are satis�ed:

1 Convergence in the mean, which means that the ex-
pectation of the vector �(n) approaches the stationary
point �� as the number of iterations n tends to in�nity;

2 Convergence in the mean square, which means that the
asymtotic values of E

�
"(n)"(n)T

�
of the mean-squared

error is �nite.

To derive the �rst two moments of the estimate of the vector
�(n), it is more convenient to work with the angle error (4).
Knowledge of the �rst two moments of the angle error "(n)
is important for establishing conditions that ensure conver-
gence of the algorithms. Obtaining analytic expression for
E
�
"(n)"(n)T

�
is di�cult, though. Therefore, we examine

only the �rst moment of "(n), i.e., the expectation E ["(n)],
to determine the necessary condition of convergence to ap-
ply with the assumptions of Section 2. The method we shall

use is based on local linearization about a stationary point
��.
To obtain simpler expressions, we summarize the algo-

rithms (2) and (3) in the general form

�(n+ 1) = �(n)� �H(�(n);x(n)) (10)

Subtracting the stationary point vector �� from both sides
of the above equation and using the de�nition of equa-
tion (4), we can rewrite the algorithm (10) in terms of the
angle error as follows:

"(n+ 1) = "(n)� �H(�� + "(n);x(n)) (11)

Suppose that "(n) is su�ciently small such that the locally
linearized model

H(�� + "(n);x(n)) = H(��;x(n)) +
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applies. We can then express equation (11) as
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M�1X
i=0

��i
@H(�)

@�i
j�� ��H(��;x(n))

This can be rewritten as

"(n+ 1) = (I � �
@H(�;x(n))

@�
j��)"(n)� �H(��;x(n))

(12)
As a consequence of our assumptions, the angle error vector
"(n) is independent of fu(n)g. Hence taking the mathemat-
ical expectation of both sides of equation (12), we get

E("(n+1)) = E(I��
@H(��;x(n))

@�
)E("(n))��E(H(��;x(n)))

(13)
If we denote

A = E

�
@H(�;x(n))

@�

�
j�=��

which depends only on the input fu(n)g at a stationary
point �� and

E [H(��; x(n))] = 0;

we may then simplify Eq. (13) as follows:

E ["(n+ 1)] = (I � �A)E ["(n)]

We therefore deduce the necessary condition that the two
algorithms converge:

Property 2 The transient component of � does not exhibit

oscillations, if the step-size parameter � satis�es

0 < � <
2PM�1

i=0
�i(A)

where the �i; i = 0; � � � ;M � 1 are the eigenvalues of the

matrix A and M is the number of rotation angles.

In the following, we shall present simulations for verifying
these propreties.
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Figure 2. Trajectories of trois rotation angles of EA

(left) and MA (right), �(R) = 3
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Figure 3. Trajectories of trois rotation angles,

�(R) = 10

4. SIMULATION RESULTS

We present the simulation results for examining the tran-
sient behavior of these two algorithms applied to a predictor
that on a real-valued autoregressive (AR) process which is
described by the second-order di�erence equation

u(n) + a1u(n� 1) + a2u(n� 2) = v(n)

where the sample v(n) is drawn from a white-noise process
of zero mean and variance �v. The transient behavior of
two algorithms is evaluated under two scenarios:

� Varying the eigenvalue separation of input fu(n)g for
a �xed step size �

� Varying the step-size parameter � for a �xed eigenvalue
separation of input

In the �rst experiment, the step size � is �xed at 0:3, and
the evaluations are made for two sets of AR parameter-
s following (a1 = �0:9750; a2 = 0:95; �(R) = 3); (a1 =
�1:5955; a2 = 0:95; �(R) = 10). Figures (2) and (3) show
the mean rotation angle evolutions for the two choices of in-
puts. We observe that the simulations con�rm that well sep-
arated eigenvalues leads to rapid convergence, while poor-
ly separated eigenvalues lead to slow convergence, and also
that the modulation algorithm converges more rapidly than
the eigenstructure one.

In the second experiment, the step size � is varied for the
input �(R) = 10. In particular, we examine the transient

behavior of EA for �max = 2=
PM+1

i=1
(A) = 0:3906 and MA

for �max = 0:5. The corresponding results are shown in the
left of Fig. 4 for EA and in the right of Fig. 4 for MA. We ob-
serve that when � approaches the value �max, the transient
behavior of two algorithms begins to exhibit oscillations.
These simulations support the theorectical analyses.
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Figure 4. EA (left) for � = 0:4, MA (right) for � = 0:5

5. CONCLUSION

In this paper, we have analyzed and compared two algo-
rithms in terms of the convergence behavior. Based on both
analysis and simulation we can see that the convergence rate
of the two algorithms increases as the separation of eigen-
values of the input covariance matrix increases. The mod-
ulation algorithm has a more rapid convergence than the
eigenstructure one due to its better eigenvalue separation.
The necessary condition for the algorithms to converge is
derived. Further study of the asymptotic covariance prop-
erties of the �lter coe�cients is presently underway.
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