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ABSTRACT

We present a parametrization of discrete finite biorthogonal
wavelets with linear phase. Our approach is similar to Zou
and Tewfik’s for orthogonal wavelets in the way that we
utilize a lattice factorization of polyphase matrices of two-
channel PR filter banks. However in the biorthogonal case
we are faced with the additional possibilitiy of having length
differences between the low- and high-pass filters. Our so-
lution to this problem is the introduction of a set of initial
polyphase matrices for the lattice product in order to receive
the possibility of choosing a certain length difference be-
tween the two corresponding filters. This modification of the
original lattice product enables us to generate a larger class
of discrete wavelets in a systematic way.

1. INTRODUCTION

In many applications of the wavelet transform it is not clear,
which wavelet to use. Thus it is often necessary to test per-
formance with a large number of different wavelets. An
easy way to systematically generate these wavelets can be
very useful in those cases. For orthogonal wavelets there
are some parametrizations [1, 2] but it is well known that or-
thogonal wavelets cannot yield linear phase. However linear
phase is a feature that is desired or to be taken in considera-
tion in many applications.

We show in this paper that the parametrization concept
from Zou and Tewfik [1] for orthogonal wavelets can be
transfered to a parametrization for linear phase discrete fi-
nite biorthogonal wavelets. We achieve that by utilizing a
lattice factorization likewise, but now it is factorization of
linear phase PR filter banks so that we are faced by addtional
problems. In particular this involves the problem of gener-
ating discrete scaling functions and mother wavelets which
differ in length.

Instead of two discrete time FIR filters as in the orthogo-
nal case we now have to design four discrete time FIR filters
H(z), G(z), H̃(z) andG̃(z), the scaling and wavelet filters
and its duals. These four filters have to form a 2-channel

perfect reconstruction FIR filter bank and thus̃H(z) =
G(−z), G̃(z) = −H(−z). Further restrictions apply when
these filters should not only lead to discrete wavelets as de-
fined for example by Rioul [3] but to continuous wavelets.

We will first summarize important essentials about
biorthogonal wavelets and will then review and extend fac-
torizations of 2-channel perfect reconstruction filter banks
with linear phase for two different cases, depending on even
or odd length of the filters.

2. BIORTHOGONAL WAVELETS

Discrete biorthogonal scaling functions and wavelets are
nothing else than the filters of a 2-channel perfect recon-
struction filter bank [3]. Discrete scaling functions corre-
spond to the low-pass FIR filtersH(z), H̃(z) and discrete
wavelets correspond to the high-pass FIR filtersG(z), G̃(z).
In many applications the discrete point of view is completely
sufficient since often only a few iterations of the transform
are calculated. However when the aim is on continuous
wavelets additional constraints apply to the filters. Essen-
tially one has to assure that the infinite products
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constitute two dual Riesz bases. Different formulations of
necessary and sufficient conditions are available. See for ex-
ample [4, 3] for further details. As we concentrate on dis-
crete wavelets we do not have to take most of these con-
ditions into account. The only conditions we need are that
H(z) is a low-pass, i.e.H(−1) = 0 andH(1) 6= 0, and
thatG(z) is a high-pass, i.e.G(1) = 0 andG(−1) 6= 0.



3. PARAMETRIZATION OF DISCRETE LINEAR
PHASE WAVELETS

As mentioned before generating discrete finite biorthogonal
wavelets means generating 2-channel perfect reconstruction
FIR filter banks. At least for linear phase solutions this leads
to lattice factorizations established by [5, 6].

One has to distinguish between two cases:

1. H(z) andG(z) have both even length, their lengths
differ by a multiple of 4,H(z) is symmetric,G(z) is
antisymmetric or vice versa.

2. H(z) andG(z) have both odd length, their lengths
differ by a multiple of 2 but not by a multiple of 4, both
are symmetric.

Call them type 1 and type 2, respectively. As in [1] we start
by describing the filter bank by its polyphase matrixHp(z):[

H(z)
G(z)

]
= Hp(z2)

[
1
z−1

]
(1)

In [5, 6] the authors develop representations ofHp(z)
in a product form to achieve better filter performance in
terms of implementation. Thus they assume that a certain
polyphase matrix is given and present algorithms to calcu-
late its factorization in order to achieve an optimal imple-
mentation finally.

Our aim is different in this work. We are interested in
generating as many perfect reconstruction polyphase matri-
ces with linear phase FIR filters as possible. For this pur-
pose we will use the same product representation but adapt
it slightly.

3.1. The Even-length Case

When both, the analysis and the synthesis filters in a PR filter
bank should be FIR,Hp(z) not only has to be invertible but
its inverse has to consist of finite polynomials. This can be
assured by the condition that the determinant ofHp(z) must
be a monomial.

In the even-length case a factorization which guarantees
this condition is [5, 6]

Hp(z) = ASLΛ(z)SL−1Λ(z) · · ·S1Λ(z)S0, (2)

Λ(z) =
[
1 0
0 z−1

]
andSi =

[
cos θi sin θi
sin θi cos θi

]
,

θi 6= kπ/4, k ∈ Z. (3)

The interpretation is as follows: LetA be the polyphase ma-
trix of a PR biorthogonal filter bank that fulfills the condi-
tions for filter banks of type 1. Then multiplication by a fac-
tor Si gives any other PR filter bank that fulfills conditions

for type 1 and has filters of the same length asA. Multipli-
cation by a factorΛ(z) increases the length of both filters by
2 while at the same time retaining the conditions for type 1.

Thus if we chooseA to be a polyphase matrix of the
shortest possible type 1 filter bank with differencel between
the lengths ofH(z) andG(z), we can generate all type 1 fil-
ter banks with filters of the same length differencel as in the
initial filter bank. To assure thatHp(z) describes a PR filter
bank, every factor must not be singular, thus condition (3).

In [5, 6] only one possible matrixA is given:

A =
[
1 1
1 −1

]
(4)

This choice leads to filter banks which can be efficiently im-
plemented by a lattice structure. However due to the singu-
larity constraint (3) some classes of filter banks cannot be
generated when only allowing (4) as a choice forA. Espe-
cially those where low- and high-pass filters differ in length
are not covered by that choice forA. In order to significantly
reduce the number of non-generatable filter banks we are in-
terested in a larger class of possible choices here. Further-
more it would be desirable to have a condition available for
generating only filter pairs of a certain length difference.

Our idea is to find an algorithm which can produce initial
polyphase matricesA with arbitrary length differences4K
between the high- and low-pass filters. For this purpose we
distinguish two cases:

A. The symmetric filter is shorter than the antisym-
metric filter

The shortest symmetric filter isH(z) = 1+z−1 (except
for scaling). A general polyphase matrix with linear phase
filters and length differences4K in this case is of the form

A =

 1 1
2K∑
i=0

aiz
−i

2K∑
i=0

−a2K−iz
−i

 , a0 6= 0, a2K 6= 0.

In order to guarantee FIR filters on both the analysis and the
synthesis sidedetA has to be a monomial. Calculation of
detA gives

detA =
2K∑
i=0

−a2K−iz
−i −

2K∑
i=0

aiz
−i

= −
2K∑
i=0

(ai + a2K−i)z−i.

ThusdetA is a polynomial with symmetric coefficients. To
be a monomial only the middle coefficient can be unequal to
zero. Thus forK > 0 we get the condition

detA = cz−r, c 6= 0
⇐⇒ ai = −a2K−i, i ∈ {0, . . . ,K − 1} ∧ aK 6= 0



and forK = 0 the condition isa0 6= 0.
This leads to the following structure for A:

A =
[

1 1
P0K(z) P1K(z)

]
, (5)

P0K(z) =


1 if K = 0
1 + tanβ1z

−1 − z−2 if K = 1

P01(zK) +
K∑
j=2

zj−K−1qj(z) if K ≥ 2,

P1K(z) =


−1 if K = 0
1− tanβ1z

−1 − z−2 if K = 1

P11(zK) +
K∑
j=2

zj−K−1qj(z) if K ≥ 2

and

qj(z) = tanβj − tanβjz2(1−j).

The number of parametersβj is equivalent to the factorK,
βj 6= (2k + 1)π/2, k ∈ Z and in additionβ1 should be
6= kπ, k ∈ Z to preventA being singular.

B. The antisymmetric filter is shorter than the sym-
metric filter

The structure is very similar to the previous one. The
shortest antisymmetric filter isG(z) = 1 − z−1. The same
strategy as in the previous case leads here to the structure

A =
[
Q0K(z) Q1K(z)

1 −1

]
, (6)

Q0K(z) = P0K(z) andQ1K(z) = −P1K(z).

for length differences4K. Again the number of parameters
βj is equivalent to the factorK, βj 6= (2k + 1)π/2, k ∈ Z
andβ1 should be6= kπ, k ∈ Z to preventA being singular.

Note that in both cases, A and B, all MatricesA from (5)
and (6) withK ≥ 1 cannot be generated in any way by the
original lattice product form.

To prove that these choices of A indeed lead to type 1
filter banks, we have to examine the lattice productS =
SLΛ(z)SL−1Λ(z) · · ·S1Λ(z)S0. One can show that this
structure gives a matrix

S =
[
a(z) z−Lb(z−1)
b(z) z−La(z−1)

]
. (7)

An arbitrary polyphase matrix of a type 1 filter bank with
length difference4K between low- and high-pass filters is
of the form

Hp(z) =
[
x(z) z−Nx(z−1)
y(z) −z−N−2Ky(z−1)

]
(8)

for case A, whereN is half the degree of the shorter filter
of the bank. When multiplying (5) and (7) it is easy to show
that this indeed leads to a matrix of the form (8). Case B is
analogous.

Now we have a simple structure to systematically gener-
ate a larger class of type 1 PR filter banks than it is possible
by the original structure with (4) as the only choice for A.
Some still cannot be generated by this structure due to the
singularity constraint (3) (see [6] for an example), but these
cases seem to be isolated and can be approximated by the
structure because of the continuity oftanβj .

As mentioned above we have to assure thatH(z) is a
low-pass andG(z) a high-pass to be certain that the two fil-
ters represent a discrete scaling function and mother wavelet
respectively. Fortunately it can be shown that these condi-
tions are fulfilled for any choice of parameters.

3.2. The Odd-length Case

In [5] also an algorithm for calculating a lattice factoriza-
tion of a given polyphase matrix with filters of type 2 is pre-
sented. This algorithm cannot be used directly to systemat-
ically generate the desired polyphase matrices, but we can
use the results to develop an algorithm which is similar to
the one in the even-length case.

That means, that we are interested in a product structure
where any additional factor increases the lengths of both fil-
ters by two while preserving the conditions for type 2 at the
same time. As in the even-length case we then only have to
find an algorithm for generating an intial polyphase matrix
which can afterwards be extended arbitrarily by use of the
product form.

One can easily derive this product form from [5, 6]:

Hp(z) = A

L∏
i=1

[
1 + z−1 1

1 + z−1 tan θi + z−2 1 + z−1

]
·
[
sin δi 0

0 cos δi

]
. (9)

If A corresponds to length 3 and length5 + 4K symmet-
ric PR filters thenHp(z) corresponds to length3 + 2L and
length5 + 4K + 2L PR filters, provided thatsin δi 6= 0 and
cos δi 6= 0. In some cases however the left- and rightmost
coefficients could become zero. To avoid this we can cal-
culate the conditiontan δi 6= −1. To assure furtheronthat
Hp(z) is invertible additionallytan θi has to be6= 2.

A shortest symmetric filter of odd length is1 +
tanαz−1 + z−2. Using a filter of lengthN = 3 + 4K + 2
with arbitrary coefficients as the second filter we can formu-



late the general polyphase matrix for this case

A =


1 + z−1 tanα

K+1∑
i=0

biz
−i

+ biz
i−2(K+1)

K∑
i=0

ciz
−i

+ ciz
i−2K−1

 .
(10)

Calculating the determinant of (10) and imposing that it
should be a monomial finally leads to the structure

A =
[
1 + z−1 tanα
P0K(z) P1K(z)

]
, (11)

P0K(z) =
K+1∑
i=0

tanβiz−i + tanβizi−2K−2,

P1K(z) =
K∑
i=0

aiz
−i + aiz

i−2K−1,

ai = tanα
i∑

j=0

(−1)i+j tanβj i < K and

aK − tanα tanβK+1 6= 0.

So we needK+4 parameters (α, aK andβi, i = 0, . . . ,K+
1) here and theβi have to be6= (2k + 1)π/2, k ∈ Z.

To prove that (9) and (11) generate type 2 PR filter banks
assume an arbitrary polyphase matrixHp(z) of such a fil-
ter bank and multiply it by the inverse of (11). We then re-
ceive a polyphase matrix where both filters are still symmet-
ric and whose lengths differ by 2. It is proven in [5] that ev-
ery polyphase matrix of this kind can be generated by the
product structure (9) (except for scaling). Thus in the odd-
length case our product structure is a complete characteriza-
tion of type 2 filter banks.

Unlike the even-length case it is not structurally guaran-
teed by (11) that one row always represents a low-pass and
the other row a high-pass. Thus the question arises if it is
possible to fulfill the low-pass/high-pass condition by im-
posing constraints on the parameters.

There are two possible solutions to this problem. If we
are only interested in filters of a certain length we can cal-
culate the values of the parametersθL, δL of the last factor
in the lattice product depending on the filters resulting from
the lattice product without the last factor.

If we are interested in receiving only low-/high-pass
pairs at every stage of the lattice product, every pair of pa-
rameters has to fulfill one of the following conditions

(a) 3 cot δi − 4 = tan θi,
(b) 1− cot δi = tan θi,
(c) −3 cot δi − 4 = tan θi,
(d) cot δi = tan θi

and the parameters ofA have also to be chosen so that the
corresponding filters constitute low- and high-pass filters.

4. CONCLUSION

Our aim has been to develop an algorithm for systematically
generating as many finite discrete wavelets with linear phase
as possible. For this purpose we adapted the well-known
lattice factorizations for PR linear phase FIR filter banks.
Because we neglected the implementation point of view we
were able to eliminate the disadvantage of the inability to de-
scribe filter pairs with length differences in the even-length
case. Thus we could enlarge the class of parameterized filter
banks in that case significantly and could also focus on the
systematic generation instead of implementation of the de-
sired filter banks in both cases. As a result we got algorithms
for systematically generating filter pairs of given lengths and
length differences.

In the even-length case all generated filters automati-
cally fulfill the conditions for discrete scaling functions and
wavelets and in the odd-length case we were able to give the
necessary constraints on the parameters to achieve this goal.
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