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Abstract|We show that oversampled �lter banks (FBs) of-
fer more design freedom and less noise sensitivity than crit-
ically sampled FBs. We provide a parameterization of all
synthesis FBs satisfying perfect reconstruction for a given
oversampled analysis FB, and we derive bounds and expres-
sions for the variance of the reconstruction error due to noisy
subband signals. Finally, we introduce noise shaping in over-
sampled FBs and calculate the optimal noise shaping system.

1 INTRODUCTION AND OUTLINE

Recent interest in oversampled �lter banks (FBs) [1]-[5] is
due to their increased design freedom, reduced noise sensi-
tivity, and noise reducing properties. This paper presents an
analysis of these advantages of oversampled FBs.
Section 2 investigates the design freedom in oversampled

FBs. We show that, for a given analysis FB, the synthesis
FB providing perfect reconstruction (PR) is not unique, and
we present a parameterization of all PR synthesis FBs [1, 2].
Section 3 presents a noise analysis for oversampled FBs.

We derive bounds on the variance of the reconstruction error
caused by noisy subband signals [1, 2], and we discuss the
dependence of the error on the oversampling factor. A sig-
nal space interpretation of noise reduction is given, and the
minimum norm synthesis FB is shown to minimize the error.
Finally, Section 4 proposes and analyzes the use of noise

shaping in oversampled FBs. The optimal noise shaping sys-
tem is derived, and a signi�cant reduction of error variance
is observed.

2 DESIGN FREEDOM

We consider a uniform FB [6, 7] with N channels (sub-
bands), subsampling factor M in each channel, analysis �l-
ters hk[n] $ Hk(z), and synthesis �lters fk[n] $ Fk(z)
(k = 0; 1; ::;N� 1). The FB is said to be critically sam-
pled or maximally decimated if N = M and oversampled if
N > M . The polyphase decompositions [6, 7] of the analy-

sis and synthesis �lters read Hk(z) =
PM�1

n=0
zn Ek;n(z

M )

and Fk(z) =
PM�1

n=0
z�nRk;n(z

M), respectively, with the
polyphase components

Ek;n(z) =

1X
m=�1

hk[mM � n] z�m ; n = 0; 1; ::;M�1

Rk;n(z) =

1X
m=�1

fk[mM + n] z�m ; n = 0; 1; ::;M�1 :

The N �M analysis polyphase matrix E(z) and the M �N
synthesis polyphase matrix R(z) are de�ned as [E(z)]k;n =
Ek;n(z) and [R(z)]n;k = Rk;n(z), respectively.
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A FB (critically sampled or oversampled) satis�es the per-
fect reconstruction (PR) property x̂[n] = x[n] if and only if
[6, 7, 1, 2, 3]

R(z)E(z) = IM ; (1)

where IM is theM�M identity matrix. In the critically sam-
pled case (N =M), E(z) and R(z) are square matrices and
thus, assuming invertibility of E(z), (1) uniquely determines
the synthesis polyphase matrix as R(z) = E

�1(z). In the
oversampled case (N > M), the matrices E(z) and R(z) are
rectangular and thus the solution R(z) of (1) is not unique.
This freedom in designing the synthesis FB for given analysis
FB is a desirable consequence of oversampling. Any solution
of (1) is a left-inverse of E(z) that can be written as [8]

R(z) = R̂(z) + U(z)
�
IN �E(z) R̂(z)

�
: (2)

Here, R̂(z) is the para-pseudo-inverse of E(z), which is a
particular solution of (1) de�ned as1

R̂(z) =
�
~E(z)E(z)

��1 ~E(z) ;
and U(z) is an arbitrary M � N matrix satisfying

j[U(ej2��)]n;k j < 1. The para-pseudo-inverse R̂(z) corre-

sponds to minimum norm synthesis �lters, i.e.,
PN�1

k=0
kfkk

2

is minimal among all synthesis FBs providing PR [5].
Eq. (2) provides a parameterization of the class of all PR

synthesis polyphase matrices R(z) in terms of the MN en-
tries [U(z)]n;k that can be chosen arbitrarily. This parame-
terization can also be formulated in the time domain as

fk[n] = f̂k[n] + uk [n] �

N�1X
l=0

1X
m=�1



f̂k; hl;m

�
ul;m[n] :

Here, the f̂k[n] denote the minimum norm synthesis �lters

(corresponding to R̂(z)), uk[n] is the �lter with polyphase

components [U(z)]n;k, i.e., Uk(z) =
PM�1

n=0
z�n [U(zM)]n;k ,

and �nally uk;m[n] = uk [n�mM ] and hk;m[n] = h�k[mM�n].
Equivalently, (2) can also be formulated in the frequency
domain as

Fk(z) = F̂k(z) + Uk(z)�
1

M

M�1X
i=0

F̂k(zW
i
M)

N�1X
l=0

Hl(zW
i
M)Ul(z);

where WM = e�j
2�

M .

1Here, ~E(z) = EH(1=z�) (with superscript H denoting conju-
gate transposition) stands for the paraconjugate of E(z) [6].



3 NOISE ANALYSIS

In this section, we shall investigate the sensitivity of over-
sampled FBs to (quantization) noise nk [m] added to the sub-

band signals vk[m] =


x; hk;m

�
(k = 0; 1; :::;N�1). Let us

collect the noise signals nk[m] in the N -dimensional vector
noise process n[m] that is assumed to be wide-sense station-
ary (WSS) and zero-mean. The N �N power spectral ma-

trix of n[m] is de�ned as Sn(z) =
P1

l=�1Cn[l] z
�l with the

autocorrelation matrix Cn[l] = Efn[m]nH [m�l]g, where E
denotes the expectation operator [6].

Variance of reconstruction error. It is convenient
to redraw the FB in the \polyphase domain" as shown
in Fig. 1 [6]. Here, x(z) = (X0(z) X1(z) ::: XM�1(z))

T

and x̂(z) = (X̂0(z) X̂1(z) ::: X̂M�1(z))
T with Xn(z) =P1

m=�1
x[mM + n] z�m and X̂n(z) =

P1

m=�1
x̂[mM +

n] z�m, and the noise n[m] is represented by its z-transform
n(z) =

P1

m=�1
n[m]z�m. Assuming a PR FB, we have (see

Fig. 1) x̂(z) = x(z) +R(z)n(z), so that the reconstruction
error e[n] = x̂[n]� x[n] is represented by

e(z) = x̂(z)� x(z) = R(z)n(z) : (3)

The reconstruction error e[n] is again WSS and zero-mean,
with M �M power spectral matrix [6]

Se(z) = R(z)Sn(z) ~R(z) (4)

and variance [9, 6]

�
2
e =

1

M

Z 1

0

Tr
�
Se(e

j2��)
	
d�; (5)

where Tr denotes the trace operator.
Henceforth we make the idealized assumption that the

noise signals nk[m] are uncorrelated and white with iden-
tical variances �2n = Efjnk[m]j2g. It follows that Cn[l] =
�2n IN �[l] and Sn(z) = �2n IN [6]. With (4) and (5), the error
variance becomes

�
2
e =

�2n
M

Z 1

0

Tr
�
R(ej2��)RH(ej2��)

	
d�: (6)

Frame-theoretic analysis of noise sensitivity. We
now assume that the FB corresponds to a frame expan-
sion [1, 2] in the sense that (i) the synthesis functions
fk;m[n] = fk[n � mM ] constitute a frame for the space of
square-summable signals, with frame bounds A > 0 and
B < 1 [10], and (ii) the analysis functions hk;m[n] =
h�k[mM � n] are chosen as the dual frame [10]. This guaran-
tees PR2 and potentially good numerical properties (char-
acterized by the frame bound ratio B=A). Furthermore,
it can be shown [1, 2] that the total energy of the sub-

band signals vk[m] =


x; hk;m

�
is bounded as 1

B
kxk2 �PN�1

k=0

P1

m=�1 jvk[m]j2 � 1
A
kxk2. For A = B (i.e. a tight

+

Figure 1. Adding noise to the subband signals.

2Choosing the analysis and synthesis functions to be dual

frames corresponds to choosingR(z) = R̂(z) in (2) [1, 2].

frame) we have
P

N�1

k=0

P1

m=�1 jvk[m]j2 = 1
A
kxk2, that is,

energy conservation up to a constant factor, which means
that the FB is paraunitary [1, 2].
The (tightest possible) frame bounds A and B of a FB

providing a frame expansion are given by

A = inf
n=0;::;M�1; �2[0;1)

�n(�); B = sup
n=0;::;M�1; �2[0;1)

�n(�);

(7)
where �n(�) denotes the eigenvalues of the matrix

R(ej2��)RH(ej2��) [1, 2].

With Tr
�
R(ej2��)RH(ej2��)

	
=
PM�1

n=0
�n(�) and (7), it

follows that MA � Tr
�
R(ej2��)RH(ej2��)

	
� MB. In-

serting this in (6), we obtain

A �
�2e
�2n

� B ; (8)

i.e., the reconstruction error variance �2e is bounded in terms
of the frame bounds A, B. Let us assume normalized anal-
ysis �lters, i.e., khkk = 1 for k = 0; 1; :::;N � 1. It can then

be shown [1, 2] that A � 1
K
� B, where K = N

M
is the over-

sampling factor. Hence, for A � B or equivalently B=A � 1,
(8) implies that small perturbations in the subbands yield a
small reconstruction error. The design of FBs with B=A � 1
(and additional desirable properties such as good frequency
selectivity) is easier for larger oversampling factor.
For a paraunitary FB with khkk = 1 we have A = B = 1

K
,

and hence (8) becomes

�2e
�2n

=
1

K
with K =

N

M
: (9)

Thus, in the paraunitary case the reconstruction error vari-
ance is inversely proportional to the oversampling factor K,
which means that more oversampling entails more noise re-
duction. Such a \1=K behavior" has previously been ob-
served for oversampled A/D conversion [11], for tight frames
in �nite dimensional spaces [10, 12], and for reconstruction
from a �nite set of Weyl-Heisenberg (Gabor) or wavelet co-
e�cients [10, 13]. Recently, under additional conditions, a
1=K2 behavior has been demonstrated for Weyl-Heisenberg
frames [13, 14]. In Section 4, we shall propose noise shaping
techniques which can do even better than 1=K2.

Noise reduction versus design freedom. Let us now
consider an oversampled FB with R(z) chosen according to

(2), i.e.,R(z) = R̂(z)+U(z)
�
IN �E(z) R̂(z)

�
, such that PR

is guaranteed. Inserting (2) in (3), we obtain the following
decomposition of the reconstruction error,

e(z) = eR(z) + e?(z) ;
where

eR(z) = R̂(z)n(z) ; e?(z) =U(z)P?(z)n(z) ; (10)

with P?(z) = IN�E(z) R̂(z). This can be interpreted as fol-

lows. Let R � [l2(ZZ)]N denote the range of the analysis FB
operator that assigns to each input signal x[n] the vector sig-

nal v[m] comprising the subband signals vk[m] =


x; hk;m

�
.

That is, R is the linear space of all subband signal vec-
tors v[m] obtained for square-summable input signals x[n].

Furthermore, let R? � [l2(ZZ)]N be the orthogonal com-

plement space [8] of R. Then PR(z) = E(z) R̂(z) =

E(z)
�
~E(z)E(z)

��1 ~E(z) and P?(z) = IN � PR(z) are the
polyphase domain representations of the orthogonal projec-
tion operators on R and on R?, respectively.



The error component eR(z) in (10) can equivalently be

written as eR(z) = R̂(z)PR(z)n(z), which shows that
eR(z) is reconstructed from the subband noise component
PR(z)n(z) in R. Similarly, e?(z) = U(z)P?(z)n(z) is re-
constructed from the subband noise component P?(z)n(z)

in R?. Since the subband noise signals nk[m] were assumed

uncorrelated and white, and since the spaces R and R? are
orthogonal, eR(z) and e?(z) are uncorrelated. Hence, their
variances, denoted respectively �2R and �2?, can simply be
added to yield the overall reconstruction error variance [15],

�
2
e = �

2
R + �

2
?:

The variance component �2R is independent of the param-
eter matrix U(z), and thus of the particular R(z) chosen.
The variance component �2?, on the other hand, depends
on U(z); it is an additional variance that will be zero if

and only if R(z) = R̂(z). Indeed, it follows from (2) that

R(z) = R̂(z) if and only if U(z)P?(z) � 0, in which case
e?(z) = U(z)P?(z)n(z) � o and thus also �2? = 0. Hence

R̂(z), the para-pseudo-inverse of E(z) (corresponding to the
minimum norm synthesis FB), yields the minimum recon-
struction error variance �2e;min = �2R among all PR synthesis

polyphase matrices R(z). Using R̂(z), all noise components
orthogonal on the range space R are suppressed, while any
other PR synthesis FB (which may have desirable properties
such as improved frequency selectivity) leads to an additional
error variance �2? since also noise components orthogonal on
R are passed to the FB output. In this sense, there exists a
tradeo� between design freedom and noise reduction.
Loosely speaking, the range space R|and thus also the

�xed noise component �2R|becomes \smaller" for increasing
oversampling factor K = N=M . This explains why more
oversampling tends to result in better noise reduction.

4 OPTIMAL NOISE SHAPING

The noise reduction in oversampled FBs can be further in-
creased by means of noise shaping techniques that generalize
noise shaping coders for oversampled A/D converters [16].
We here propose a noise shaping system cradled between the

analysis FB (E(z)) and the synthesis FB (R̂(z); note that
we use the minimum norm synthesis FB), and represented
by the N �N transfer matrix G(z) (see Fig. 2). Modeling
the quantizer in Fig. 2 by additive noise n(z) (cf. Fig. 1), it
is readily shown that the reconstruction error is given by

e(z) = R̂(z)G(z)n(z) : (11)

Again assuming uncorrelated and white noise signals, i.e.,
Sn(z) = �2n IN , the reconstruction error variance is

�
2
e =

�2n
M

Z 1

0

Tr
�
R̂(e

j2��
)G(e

j2��
)G

H
(e
j2��

)R̂
H
(e
j2��

)
	
d�:

(12)

+

+
+

–
+

–

Figure 2. Oversampled FB with noise shaping.
(The box labeled Q denotes the quantizer.)

Without further constraints, the noise could be completely
removed using the orthogonal projection system G(z) =

P?(z) = IN � E(z) R̂(z). Indeed, inserting in (11) it fol-

lows with R̂(z)E(z) = IM that e(z) � o. This noise shaper

projects the noise onto R?, and the projected noise is then

suppressed by the minimum norm synthesis FB R̂(z).

Optimal noise shaper. Unfortunately, the above ideal
noise shaper is inadmissible as it leads to a noncausal feed-
back loop system IN � G(z). Therefore, we hereafter con-
strain the noise shaping system to be a causal FIR system,

G(z) = IN +

LX
l=1

Gl z
�l
;

resulting in a strictly causal feedback loop system IN�G(z).
We now derive the optimal noise shaping system, i.e., the
matrices Gl minimizing the reconstruction error variance �2e
in (12). We assume a paraunitary FB with normalized, real-
valued analysis �lters (hk[n] 2 IR and khkk = 1) of �nite
length Lh = (P + 1)M (with some P 2 IN). We then have

E(z) =
PP

r=0
Er z

�r where [Er]i;j = hi[rM � j] 2 IR. After

some manipulations the error variance is obtained as [17]

�
2
e =

�2n
MK2

"
MK +Tr

(
LX
l=1

�
�lG

T
l +�

T
l Gl

�)

+ Tr

(
LX
l=1

LX
m=1

�m�lGlG
T
m

)#
;

where �l =
PP

r=0
ErE

T
r�l. From this expression, it can be

seen that choosing the order of the noise shaping system as

L = P+1 is su�cient. Setting (cf. [18], Section 5.3)
@�2

e

@G
i

= 0

for i = 1; :::;L, we obtain the linear system of equations

LX
l=1

�i�lGl = ��i ; (13)

which has block Toeplitz form and can thus be solved e�-
ciently using the multichannel Levinson recursion [19]. In-
deed, the noise shaping considered here can be shown [17] to
be closely related to multichannel linear prediction [19].

A simple example. Let us consider a simple parauni-
tary two-channel FB (i.e., N = 2) with M = 1 and, hence,
oversampling factor K = 2. The analysis �lters are the Haar
�lters H0(z) =

1p
2
(1 + z�1) and H1(z) =

1p
2
(1 � z�1), and

the minimum norm synthesis �lters are F̂0(z) = 1
2
~H0(z)

and F̂1(z) = 1
2
~H1(z). Without noise shaping, we obtain

�2e = �2n=2, which is consistent with the 1=K result (9).
With (13), the optimal noise shaping system of order L = 1

is obtained as G(z) = I2 +G1 z
�1 with

G1 =
1

2

h
�1 �1
1 1

i
;

and the minimal error variance is obtained as �2e = �2n=4.
Thus, the variance has been reduced by a factor of 2. It is
instructive to compare this result with the optimum noise
shaping system G

D(z) of order L = 1 obtained under the
constraint that G(z) is a diagonal matrix (i.e., the redun-
dancy between the two channels is not exploited); here,

G
D
1 =

1

2

h
�1 0
0 1

i



and �2e = 3
8
�2n. Thus, as expected, failing to exploit the

interchannel redundancy leads to a larger error variance.

The transfer functions F̂0(z), F̂1(z) of the synthesis FB and
the transfer functions G00(z), G11(z) of the noise shaping
�lters in the diagonal of G(z) (the same as in the diagonal

of GD(z)) are depicted in Fig. 3.
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Figure 3. Synthesis �lters and noise shaping �lters in an

oversampled two-channel FB: (a) F̂0(z), (b) F̂1(z),
(c) G00(z), (d) G11(z).

It can be seen that the noise shaping system G00(z) = 1�
1
2
z�1 (operating in the lowpass channel) attenuates the noise

at low frequencies (note that F̂0(z) attenuates high frequen-
cies), whereas the noise shaping system G11(z) = 1 + 1

2
z�1

(operating in the highpass channel) attenuates the noise at

high frequencies (note that F̂1(z) attenuates low frequencies).

Simulation results. For three paraunitary odd-stacked
cosine modulated FBs [17] with N =16, Lh =81 (length of
prototype), and M=8, 4, and 2, respectively (i.e., oversam-
pling factors K = 2, 4, and 8, respectively), Fig. 4 shows

the normalized error variance 10 log(
�2
e

�2
n

) as a function of the

noise shaping system's order L. Note that for increasing L
the error variance decreases up to a certain point, after which
it remains constant.
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Fig. 4. Normalized error variance 10 log(�2e=�
2
n) as a function

of the noise shaping system's order L.

5 CONCLUSION

We have shown that oversampled FBs feature increased de-
sign freedom and improved noise immunity. The latter prop-
erty allows a coarser quantization of the subband signals. We
introduced oversampled noise shaping subband coders that
exploit intrachannel and interchannel redundancies to yield
a substantial noise reduction. A rate-distortion analysis [20]
of source coding using oversampled FBs is an interesting di-
rection of further research; �rst results on this topic (without
noise shaping) have been reported in [21].
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