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ABSTRACT

In this paper multiwavelets based on two scaling func-

tions are discussed. They exhibit the following proper-
ties: compact support, symmetry and orthogonality as

well as a good frequency resolution. Lattice structu-
res do not only o�er the possibility to implement these

multiwavelet transforms, the lattice rotation angles also
can be used in order to parameterize all multiwavelets
of a certain length. Here we search for optimal multi-

wavelets with respect to regularity, vanishing moments,
frequency behavior (stopband attenuation) and also take

a simple implementation into consideration.

1. INTRODUCTION

In recent years wavelet transforms have gained a lot
of interest in many application �elds, e.g. image and
speech processing [2], denoising or solving di�erential

and integral equations [1]. Di�erent variations of wave-
let bases have been presented, whereby most attention

was focussed on single wavelet transforms [3]. Single
wavelet transforms are based on one scaling function
�(t) and one wavelet function 	(t), which meet the

following dilation equations:

�(t) =

n�1X
k=0

gk�(2t� k); 	(t) =

n�1X
k=0

hk�(2t� k):

The discrete coe�cients gk and hk de�ne the dis-
crete wavelet transform and the complementary wave-
let �lters G(z) =

P
k
gkz

�k (low pass) and H(z) =P
hkz

�k (high pass), and also appear in the wavelet

basis matrixW =

�
gk
hk

�
.

One possibility to implement orthogonal wavelet �l-
ters is using lattice structures. These lattice structu-

res also allow a parameterization of orthogonal wavelet
transforms. In Figure 1, a lattice structure is shown

implementing wavelet �lters of length n = 4. Depen-
ding on �, wavelets of n = 4 can be parameterized.

In [3] versions showing a maximal amount of vanishing

moments, or most regular wavelets were presented, wa-
velets with better frequency resolution were discussed
in [5]. The property of a very simple implementation

was embedded into the wavelet design in [7], whereby
only very few CORDIC elementary steps were used re-

quiring only a reduced number of shift and add opera-
tions for implementing the orthogonal �lters. Allowing
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Figure 1: Lattice structure implementing a singlewave-
let �lter (n=4)

to preserve the signal's phase in the subband as well as
an e�cient processing at borders, symmetry is a desi-

red property in image processing applications. Howe-
ver, it is impossible to design orthogonal and symme-

tric singlewavelets (except for the trivial Haar basis).
Designing regular, orthogonal and symmetric wavelet

systems is only possible by using several scaling func-
tions and wavelets [10, 4, 6, 11, 8]. In [9] multiwa-
velets based on two scaling functions were presented

being orthogonal and symmetric. They show a good
frequency resolution (similar toM{band wavelets) and

are quite regular. In this paper the approach of [9] is
generalized, multiwavelets based on two scaling func-
tions and wavelets are parameterized in the domain of

the rotation angles of special lattice �lters. Multiwa-
velet systems are designed with a maximal amount of

vanishing moments, optimal regularity or stopband at-
tenuation. Also a simple implementation is taken into

consideration.



2. DESIGN OF SYMMETRIC

MULTIWAVELETS

Multiwavelet systems using 2 scaling functions and 2
wavelets are based on 4 dilation equations, that are

also represented by the basis matrixW of size 4� 4m.

�v (t) =

2X
l=1

2m�1X
k=0

gv;2k�1+l�l (2t� k) ; v 2 f1; 2g;

	v (t) =

2X
l=1

2m�1X
k=0

hv;2k�1+l�l (2t� k) ; v 2 f1; 2g;

W =

�
WU

WL

�
=

0
BB@

g1;0 g1;1 : : : g1;4m�1

g2;0 g2;1 : : : g2;4m�1

h1;0 h1;1 : : : h1;4m�1

h2;0 h2;1 : : : h2;4m�1

1
CCA

In [9] multiwavelets were designed by the algebraic

design method. Thereby the properties of the con-
tinuous bases (i.e. orthogonality and vanishing mo-
ments) are converted to equations for the discrete coef-

�cients of the basis matrixW resulting in a system of
equations. In order to construct symmetric bases with

good frequency resolution, a specially structured ma-
trixW bases the approach also reducing the number of
unknowns drastically. As example the structured basis

matrix for n = 2m = 6 is shown:

W =

0
BB@
a0 b0 a1 b1 a2 b2 a2 �b2 a1 �b1 a0 �b0
a0 �b0 �a1 b1 a2 �b2 �a2 �b2 a1 b1 �a0 �b0
b0 a0 b1 a1 b2 a2 �b2 a2 �b1 a1 �b0 a0
b0 �a0 �b1 a1 b2 �a2 b2 a2 �b1 �a1 b0 a0

1
CCA ;

Solving the system of equations enables a wavelet sy-
stem with p = 3 vanishing moments. The correspon-

ding bases are calledMV
6 in this paper, they are plotted

in Figure 2. Their frequency characteristics are shown
in Figure 3. Similar to the singlewavelet case, al-
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Figure 2: Multiwavelets of p = 3 and the corresponding

scaling functions (version MV
6 )
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Figure 3: Frequency characteristics of the symmetric
multiwavelets of p=3 and the corresponding scaling
functions

ternatively to the solution with a maximal number of

vanishing moments, other solutions (e.g. a more regu-
lar version) are of great interest. In order to �nd these

bases a tool to parameterize all multiwavelets of certain
compact support is required.

3. PARAMETERIZATION OF SYMMETRIC

MULTIWAVELETS

Lattice structures are not only good tools for imple-
menting multiwavelet transforms, also the parameteri-

zation of all multiwavelets of certain length is possible
in the domain of the lattice rotation angles. Figure

4 shows a lattice structure implementing multiwavelet
�lters of length n = 6 (Gv(z) =

Pn�1

i=0 gv;iz
�i;Hv(z) =Pn�1

i=0 hv;iz
�i; v 2 f1; 2g). Though arbitrary lengths

are possible, throughout the paper we focus on the ex-

ample of n = 6. Orthogonality is ensured by only using
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Figure 4: Lattice structure implementing multiwavelet

�lters of n = 6, (c!i = cos!i; s!i = sin!i)

orthogonal rotations, a wavelet transform (at least one
vanishing moment) is guaranteed by the constant sum

of rotation angles

!1 + !2 + !3 = 0 (1)

leading to a two{dimensional parameter space. In this
two{dimensional parameter space, one can search for

the optimal multiwavelet with respect to the desired
properties.



Compact Support: If all parameters are zero, one

gets the trivial Haar{based multiwavelets of support
n = 2. Setting only !3 = 0o results in bases with n = 4,

whereby multiwavelets with approximation order p = 2
can be designed (!1 = �!2 = 6:8221o). This version
MV

4 is quite similar to the bases of Figure 2 and Figure

3.
Vanishing Moments and Regularity: A suita-

ble tool for analysing multiwavelet systems is the ma-
trix R, including the upper part of the matrixW .

W
W

. . . 
. . . 

. . . 
. . . 

U

UR = 2

If R has the eigenvalues 2�i, i = 0; : : : ; p � 1, the
wavelet system has approximation order p. Within our
two{dimensional parameter space the eigenvalue 1 is

guaranteed. Since the multiwavelet system MV
6 of Fi-

gure 2 shows 3 vanishing moments (see also Figure 3,

where
di	1;2

dfi jf=0= 0; i = 0; 1; 2) the respective matrix

R has the eigenvalues 1, 1/2 and 1/4. The parame-
ters of this solution are !1 = �4:3751o; !2 = 7:0801o

and !3 = �2:7050o. Evaluating the largest eigenva-

lue � being di�erent to 2�i leads to an upper bound
of the regularity of the wavelet system r = � log2 �.

For version MV
6 r = 1:0637. In order to improve the

smoothness similar to the singlewavelet case giving up
vanishing moments allows to maximize r and minimize

�, whereby always p vanishing moments must be gua-
ranteed to achieve a regularity r > p � 1. The ver-

sionMR
6 with optimal regularity requires rotation ang-

les !1 = �19:4084o; !2 = 6:4524o and !3 = 12:9559o.

Thereby giving up one vanishing moment (p = 2) the
smoothness can be improved to r = 1:8221. The con-
tinuous bases of solution MR

6 are plotted in Figure 5.

The �rst numerical derivatives �0

1 and �0

2 of both sca-
ling functions of Figure 6 show how the regularity is im-

proved: The dotted lines representingMV
6 are rougher

than the solid lines of version MR
6 .

Frequency Behaviour: In order to get the solu-

tion with the best stopband attenuation, the stobband
norm of the scaling function �1(f) at a certain scale is

evaluated (because of the special structure ofW impro-
ving �1(f) is equivalent to improving the whole wavelet

system). Choosing the parameters!1 = �29:9735o; !2 =
7:5935o and !3 = 22:3800o results in version MF

6 with
optimal frequency behavior. The corresponding con-

tinuous bases of this version are plotted in Figure 7.
Comparing the frequency behavior of version MV

6 (Fi-

gure 8, dotted line) with the stopband attenuation of
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Figure 5: More regular multiwavelets of p = 3 and the
corresponding scaling functions
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version MF
6 (Figure 8, solid line) shows the achieved

improvement.
Simple VLSI{Implementation: For the imple-

mentation of orthogonal singlewavelet transforms spe-
cial 2�2{rotations can be implemented very e�ciently
using CORDIC{based elementary rotationsG(�k) [7].

They rotate by �k = arctan2�k and require only a few
shift and add operations.

G(�k) =
1p

1 + 2�2k

�
1 �2�k

��2�k 1

�

Thereby, double rotations G(��k)G(��k) are requi-

red in order to simplify the scaling factor,

1
p
1 + 2�2k

2
= (1� 2�2k)(1 + 2�4k)(1 + 2�8k) : : :

as well as in the parameterization scheme to conserve

the constant sum of rotation angles. Also for the ef-
�cient implementation of the presented multiwavelet

systems CORDIC{based approximate rotations can be
used instead of the exact rotations without violating
the orthogonality property and the �rst vanishing mo-

ment (1). Using one or a few of these simple CORDIC{
based elementary rotations reduces the continuous pa-

rameter space to a reduced, discrete parameter space.
In this reduced parameter space close approximations

to the exact solutions are possible allowing a very sim-
ple implementation without loosing the performance
of the transform. The lattice structure of the multiwa-

velet transform with minimized computational costs,
approximating the exact transform MV

4 quite well is

shown in Figure 9 (!1 = �!2 = 180

�
arctan2�3 � 7:1o,

!3 = 0o).
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Figure 9: Lattice structure approximating the multi-
wavelet �lters of n = 4 and p = 2 (version MV

4 )

4. CONCLUSION

In this paper symmetric and orthogonal multiwavelets
are parameterized. The parameters are the rotation
angles of the lattice structures implementing the stages

of the wavelet transform. In the parameter space soluti-
ons with a maximal amount of vanishing moments were

evaluated, as well as versions with improved regularity
and frequency behavior. Also a simple implementation
of the discrete transforms was taken into consideration.

The design and parameterization of orthogonal, com-
pactly supported wavelets is generalized to symmetric

multiwavelets.
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