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ABSTRACT

Compressed images may be decompressed for devices us-
ing di�erent resolutions. Full decompression and rescaling
in space domain is a very expensive method. We studied
downscaled inverses where the image is decompressed par-
tially and a reduced inverse transform is used to recover
the image. We studied the design of fast inverses, for a
given forward transform. General solutions are presented
for M -channel FIR �lter banks of which block and lapped
transforms are a subset.

1. INTRODUCTION

Suppose an image is scanned and compressed using an M -
channel block or lapped transforms. It is then stored and
printed or displayed on one of several devices, each sup-
porting a distinct resolution. Thus, one must be able to
decompress the image and resize it to �t the desired reso-
lution. It is reasonable to assume that the image will be
stored at a higher resolution and downsized to �t the lower
resolution devices. It is also desirable to avoid bu�ering the
full resolution image or to process more pixels than neces-
sary. The alternative is to decompress the image directly
into its lower resolution.

Transform coding is very popular for image compres-
sion. Downsampling by factors which are powers of 2 is triv-
ial if we use the discrete wavelet transform (DWT) or other
similar subband approaches [1]. However, we focus our
attention on other attractive transforms which are called
\parallel" or \M -channel" [2]. In these, the input image is
directly decomposed into several subbands at once. Exam-
ples of these transforms are block transforms such as the
discrete cosine and sine transforms (DCT,DST) [3], along
with lapped transforms such as the lapped orthogonal trans-
form (LOT) [4, 5], the generalized LOT (GenLOT) [6] and
extended lapped transforms (ELT) [4, 7], as well as other
M -channel �lter banks [2].

2. BACKGROUND

2.1. Filter banks and polyphase matrices

We use FIR uniform �lter banks, of which block and lapped
transforms are special cases. There are M analysis �lters
fk(n) and M synthesis �lters gk(n) (0 � k �M � 1). The
signal x(n) is decomposed into M subband signals yk(m)

(0 � k � M � 1). After processing or quantization, the
subband signals ŷk(m) are used to construct the signal x̂(n).
For simplicity, let fk(n) and gk(n) have L = NM taps each,
padding zeros if necessary.

It is more convenient to work with the polyphase trans-
fer matrix (PTM) of the system which is a linear multi-
input multi-output (MIMO) system of FIR �lters relat-
ing M polyphase components of the input signal (xi(n) =
x(nM + i)) to the M subbands [2]. Conversion to and from
polyphase components are called blocking and unblocking
operations. A PTM is an LTI system i� it is pseudo circu-
lant [2], otherwise (which is often the case) it represents a
linear periodically time-varying (LPTV) �lter.

The signal is blocked and passed through the analysis
PTM F(z). It is reconstructed from the subbands using the
PTM GT (z) followed by an unblocking device. (The rows
of G(z) correspond to the �lters gk(n).) As L = NM , the
PTMs have polynomial entries of order N � 1. In practice,
neither PTM represents an LTI system. However, for per-
fect reconstruction (PR) analysis-synthesis systems [2, 4]
we have

T(z) = G
T
(z)F(z) = z

�N+1
IM : (1)

and the overall system is an LTI �lter (a pure delay).

2.2. Resampling as post-processing

The straightforward method to rescale the compressed im-
age is to perform an inverse transform and, then, scale the
image, as in Fig. 1.

A simpli�cation can be achieved if we allow non-uniform
resampling and assume K < M . For this, we employ the
symbol " K=M # in Fig. 1, which means: retain K out of
M samples. More generically, one can retain nK out of nM
samples. In Fig. 1 the �lter H(z) is a low-pass with cuto�
on K�=M . The �ltered signal v(n) is resampled to the �nal
sampling rate yielding u(n). H(z) can be moved past the
unblocking device as a MIMO system as shown in Fig. 1.
Let x(z) have entries Xi(z) = Zfxi(n)g. Hence,

v(z) = H(z)G
T
(z)F(z)x(z) = H(z)T(z)x(z) (2)

and, for PR �lter banks, V (z) = z
�L+1

H(z)X(z) and the
overall system is LTI followed by a resampler. IfM=K is an
integer, the system becomes a trivial uniform downsampler,
where P = 1 and Q = M=K, and the �lter has cuto� at
�=Q. The synthesis system and �lters are e�ectively
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Figure 1: The analysis and synthesis systems with resam-
pling as post-processing. If non-uniform downsampling is
used, the �lter can be moved past the unblocking device.

S(z) = H(z)G
T
(z): (3)

sk(n) = h(n) � gk(n): (4)

However, any fast algorithm for G(z) may be lost.

2.3. Discarding subbands

A computationally e�cient way to implement the �lter may
borrow the �ltering properties (stopband attenuation, etc.)
of the �lters fk(n) and gk(n). If the �lters have good stop-
band attenuation, we can simply discard the highest fre-
quency M �K subbands and keep the lower K subbands.
Then, we can either set yi(n) = 0 for K � i � M � 1, or
set gi(n) = 0 for K � i �M � 1 and 0 � n � L� 1. Let

I
0

K;M = diagf1; 1; : : : ; 1| {z }
K 10s

; 0; 0; : : : ; 0| {z }
M�K 00s

g (5)

The equivalent synthesis system is given by

S(z) = G
T
(z)I

0

K;M : (6)

T(z) = G
T
(z)I

0

K;MF(z) (7)

Unless severe restrictions are imposed to the �lter bank
design, T(z) will not represent an LTI system. However, if
the aliasing terms are su�ciently small the overall transfer
�lter is approximately LTI and given by

T (z) �
1

M

K�1X
k=0

Gk(z)Fk(z): (8)

So, \good" �lters may approximate a reasonably selective
�lter after discarding subbands. We cannot compare LPTV
and LTI �lters but the above approximation is useful to give
a reference point. Fig. 2 shows a comparison of approxi-
mated LPTV �lters and LTI ones.
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Figure 2: Frequency response plots for some useful �lters
for downsampling a signal at a 4:1 ratio.

3. BLOCK RESAMPLING

The goal in this paper is to directly design a synthesis sys-
tem which would output K samples of u(n) for every block
of M subband samples (yi(m) for 0 � i � M � 1). In this
case, we can design a synthesis PTM such that

S(z) =

2
4

S00(z) � � � S0;M�1(z)
...

. . .
...

SK�1;0(z) � � � SK�1;M�1(z)

3
5 ; (9)

and T(z) becomes a K �M matrix given by

T(z) = S(z)F(z): (10)

S(z) implies �ltering and resampling. We can design S(z)
by block resampling of the output signal of a regular analysis-
synthesis system and implement �ltering by processing the
subbands, i.e.

S(z) = �(z)G
T
(z)C(z); (11)

where �(z) is a K �M resampling matrix and C(z) is the
�ltering operator. For example, if C(z) is a diagonal matrix
with zero order entries, it will perform �ltering by weighting
the subbands. Let

v(z) = G
T
(z)C(z)F(z)x(z) = A(z)x(z); (12)

so that

u(z) = �(z)v(z): (13)

The signal v(n) has M samples per block, while the �nal
signal u(n) has only K samples per block. Thus u(z) has
the K polyphases Ui(z) and v(z) has M polyphases Vi(z).
We have chosen to construct a continuous curve from which
u(n) and v(n) can be found by uniform sampling. This ap-
proach only works if the samples of v(n) generate smooth
curves, i.e. if the LPTV �lter A(z) does a good job of re-
moving high-frequency components. Linear interpolation
(�tting a straight line in between every two samples of u(n)
) is generally visually pleasing. Splines and higher order
polynomials may be used as well. The sampling grid we
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Figure 3: The interval of a block originally with 8 samples,
is resampled at 2 and 3 samples per block.

have chosen is illustrated in Fig. 3, where sampling occurs
at the center of K uniform cells that �ll the block interval.
It is straightforward to design �(z) to allow the proposed
resampling. For example, with a piecewise linear interpola-
tion between samples, M = 8 and K = 2, we have

�(z) =

�
0 0:5 0:5 0 0 0 0 0
0 0 0 0 0 0:5 0:5 0

�

For the �ltering operator, we can further simplify the
problem by using the approach in Sec. 2.3 (C(z) = I0K;M ).
Then, �ltering is accomplished by retaining only the K

lower frequency subbands. Let �y(z) be the vector with
the K lowest frequency subbands. We want to design a
PTM, which we denote by R(z), directly relating these K
subbands to the K output polyphase components as:

u(z) = R
T
(z)�y(z): (14)

Let � = [IK ; 0K�M�K ] so that �G(z) = �G(z). Hence,

u(z) = R
T
(z)�ŷ(z) = R

T
(z)�F(z)x(z) (15)

S(z) = R
T
(z)� (16)

As C(z) = I0K;M = �T�, we have that

S(z) = �(z)G
T
(z)�

T
� (17)

R
T
(z) = �(z)G

T
(z)�

T
= �(z) �G

T
(z): (18)

This result implies that the K synthesis �lters should be
resampled versions of the K �lters corresponding to the
K lowest-frequency subbands of the original synthesis �lter
bank G(z). Thus, the actual synthesis �lters rk(n) have
length NK and are found as

rk(z) = �(z)gk(z): (19)

We can de�ne a continuous function for the �lters �k(t), for
0 � k � K � 1, which are uniformly sampled. Thus,

rk(n) = �k

�
2n+ 1

2K
�

�
(20)

for � representing the normalized support of M samples
of the impulse response of gk(n). See [8] for more in the
subject including upsampling and more general factors.

4. FAST TRANSFORMS

For fast transforms, we design R(z) possessing a fast algo-
rithm to approximate given G(z) and �(z). Table 1 shows
the �lters response for DCT and DST of types II (the com-
mon one) and IV [3]. It also gives a desirable continuous
function that will interpolate the original �lter samples,
from which the new �lters rk(n) are found. In this case,
if the listed block transforms have their k � k transform
matrix denoted as Dk, the forward transform employs DM

while the synthesis �lters are found as

R
T
(z) =

r
K

M
D
T
K : (21)

Resizing in the DCT domain has been studied before
[9]. Similar resampling methods for the DCT have also
been recently reported [10, 11].The table also includes re-
sults for a cosine modulated �lter bank known as the ELT
[4]. If Ek(z) is the analysis PTM for the k-channels ELT,
the downscaled synthesis is found as:

R
T
(z) =

r
K

M
E
T
K(z): (22)

Note that for the ELT, one may have to �nd an appropri-
ate continuous modulation prototype (window) w(t). We

recommend interpolating w
(M)(n) (M -channels case) into

w(t) with a smooth function such that w(K)(n) (K-channels

case) can be found by w
(K)

k (z) = �(z)w
(M)

k (z).
The same concepts also apply to other �lter banks and

lapped transforms. The LOT and GenLOTs are �lter banks
(lapped transforms) whose �lters have linear-phase (sym-
metric bases) [4, 5, 6]. The LOT can be viewed as a spe-
cial case of a GenLOT [6]. In this case, if L(z) is the K-
channel synthesis GenLOT (with proper reoptimization of
its parameters for given M -channel analysis GenLOT [8])
we have

R
T
(z) =

r
K

M
L
T
(z): (23)

We also carried tests, by compressing an image at 1
bit/pel using JPEG (DCT) and decompressing it at a quar-
ter resolution (M = 8; K = 2). The proposed method takes
12 operations (multiplies plus adds) to construct a block of
2� 2 pixels from the block with the 8� 8 DCT coe�cients.
We compared it to space-domain subsampling techniques
including: no post�lter (672 ops); 4 � 4 averaging �lter
(736 ops); 21 � 21 Hamming �lter (4196 ops). Portions of
the decompressed images are shown in Fig. 4. We also show
in Fig. 5 the reconstructed image using the ELT in place
of the DCT in JPEG, with and without mismatch in the
window design, in order to highlight its importance.

5. CONCLUSIONS

We studied methods to decompress a compressed image to a
lower resolution. A general framework was presented allow-
ing the use of an arbitrary FIR uniform paraunitary �lter
bank along with speci�c algorithms aimed at popular block
and lapped transforms. As results have shown, the solu-
tions we propose yield higher quality of the decompressed



Table 1: Continuous functions for popular block and lapped transforms
Transform �lter elements gk(n) continuous function �k(t)

DCT
p

2
M
�k cos((2n+ 1)k�=2M) �k

p
2
M

cos(tk�)

DST
p

2
M
�k sin((2n+ 1)k�=2M) �k

p
2
M

sin(tk�)

DST-IV
p

2
M

sin((2n+ 1)(2n+ 1)�=4M)
p

2
M

sin(t(2k + 1)�=2M)

DCT-IV
p

2
M

cos((2n+ 1)(2n+ 1)�=4M)
p

2
M

cos(t(2k + 1)�=2M)

ELT w(n)

r
2

M
cos

h�
k +

1

2

�
�

M

�
n+

M + 1

2

�i
w(t)

r
2

M
cos

h�
k +

1

2

��
t+

�

2

�i

Figure 4: Reconstructed JPEG images at a quarter reso-
lution. From top to bottom: proposed method; no �lter;
4� 4 averaging; and 21� 21 Hamming �lter.

image compared to other simple reconstruction methods.
Furthermore, it also leads to much faster implementation.
The basic idea is to resample the synthesis �lters instead of
resampling the image.
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