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ABSTRACT

A new filter structure and design method for time-varying cosine
modulated FIR filter banks with critical sampling, perfect recon-
struction, and an efficient implementation is presented. The pro-
posed filter banks have an arbitrary system delay which can be cho-
sen in the design process and is independent of the arbitrary filter
length, hence making a low system delay possible. The time vari-
ation includes changing the number of bands and/or filters during
signal processing while maintaining critical sampling and perfect
reconstruction. The transition windows can be overlapping, which
improves the frequency responses. It is based on a factorization of
the polyphase matrices into a cascade of 2 types of simple matri-
ces.

1. INTRODUCTION

The system considered here is anN band (N not necessarily even)
cosine modulated FIR filter bank with critical downsampling and
perfect reconstruction (PR). If a support preservative PR filter bank
is time varying the filters and sometimes also the number of sub-
bands are changed while processing a signal in such a way that
the input signal can still be reconstructed by the synthesis filter
bank and the total number of subband samples does not exceed the
number of input samples [1, 2, 3, 4, 5]. This has the advantage that
the filter bank can be adapted e.g. to changing signal statistics in
coding applications even during operation, which leads to a higher
coding gain and reduced coding artifacts.

Stationary low-delay (or bi-orthogonal) cosine-modulated fil-
ter banks have first been introduced in [7, 8, 10], later a differ-
ent approach was used in [6]. This makes filter banks with non-
symmetric filters and a lower than usual delay possible, which is
important for applications like speech and audio coding. However,
the problem of time-varying bi-orthogonal filter banks with chang-
ing numbers of subbands has not been addressed in theliterature
before and will be addressed in the following using the factoriza-
tion or cascade described in [12], which is computationally effi-
cient and PR even if low precision arithmetic is used. Its system
delay does not need to be an integer multiple ofN , it can be spec-
ified in terms of the input sampling rate, so that it can be matched
more closely to some requirements.

The analysis and synthesis impulse responses, resp., are given
by:
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wherek is the frequency or band index,andh(n) andh0(n) are

the analysis and synthesis baseband prototype filters, respectively.
Their lengthsLN can include leading or trailing zeros. The scal-
ing factor of2=N simplifies the following notation. The down-
sampled analysis filter output isyk(m), wherem is the index at
the lower sampling rate. The filter bank is PR if the synthesis out-
put signalx̂(n) is identical to the analysis input signal delayed by
nd samples,̂x(n) = x(n � nd), wherend is the system delay.
Orthogonal or unitary filter banks have a standard system delay
which equals the length of its filters minus one sample.

1.1. Definitions
Boldface letters denote matrices or vectors, capital letters z-
transforms. “:=” means “defined as”. A polynomial matrixF(z)
is causal if it contains no positive powers ofz. I andJ denote
theN �N identity and counter identity matrix resp.,diag is an
N �N diagonal coefficient matrix andS(z) is a shift matrix.
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[F]n;k denotes the element at then’th row andk’th column of
the matrixF,

Q�

j=1
Lj := L1 �: : :�L� (the ordering is important).

2. THE POLYPHASE NOTATION

The basis of the theory is the polyphase formulation. The effect
of downsampling and upsampling in the analysis and synthesis
filter bank, respectively, can be viewed as processing the signal
in blocks of lengthN . The analysis input is represented by an
N -dimensional row vectorx(m) composed of sequences of the
downsampledx(n),

x(m) := [x(mN); : : : ; x(mN +N � 1)]

:= [x0(m); : : : ; xN�1(m)]

Thez-transform ofx(m) is the row vector

X(z) = [X0(z); : : : ;XN�1(z)]



The analysis output is represented by the z-domain row vector
Y(z) = [Y0(z); : : : ; YN�1(z)] and the synthesis output bŷX(z).
The analysis type-2 polyphase matrix isPa, its elements are

[Pa(z)]n;k :=

L�1X
m=0

hk(mN +N � 1� n)z
�m

n; k = 0; : : : ;N � 1. The synthesis type-1 polyphase matrix is

[Ps(z)]k;n :=

L�1X
m=0

gk(mN + n)z
�m

The analysis filtering and downsampling and the synthesis filtering
and upsampling operation can then be written as

Y(z) = X(z) �Pa(z) ; X̂(z) = Y(z) �Ps(z)

The filter bank is PR ifPa(z) �Ps(z) = z�d � Snt(z), for some
integerd andnt < N � d (for causality). This is a delay byd
sizeN blocks and an advance bynt samples at the input sampling
rate. With the blocking delay of lengthN � 1, which results from
forming input blocksX(z) of lengthN before processing them,
the system delay isnd = N � 1 + d �N � nt, wherent can be
used for the “fine tuning” of the system delay.

3. THE NEW FILTER STRUCTURE

The time-varying filter banks that will be introduced are based on
a new formulation for modulated FIR filter banks [12], which is
briefly described next. The key for the new filter bank design is the
factorization of the polyphase matrices in a product of sparse “fil-
ter matrices” with polynomial elements on their diagonal and anti-
diagonal, transform matricesTa, Ts, and the shift matrixS(z).
They all can be implemented efficiently. The filter matrices are
such that analysis and synthesis both have FIR filters, according to
(1) and (2). Since there are 2 independent variables in the design
process, the system delay and the filter length, 2 types of matrices
are needed. The first are zero-delay matrices, who have the char-
acterizing property that their inverse is causal. Including them in
the product increases the length of the filters byN , but not the sys-
tem delay. The second type of key matrices are maximum-delay
matrices, who have an inverse which needs a multiplication with
z�2 to make it causal. Their use also increases the filter length by
N , but the system delay by2N . They can be seen as each, the
matrix and its inverse, delaying the signal by one step at the lower
sampling rate. Both types have a sparse structure, which leads to
the efficient implementation, and are given below.

Zero-Delay Matrices– They increase the filter length but not the
system delay.
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whereeij, g
i
j are matrix coefficients, andi denotes different sets of

coefficients (i > 0). Observe that their inverse is causal, so that no
multiplication with a delay is necessary.
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Maximum-Delay Matrices– They also increase the filter length,
but especially the system delay.
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The matrixB0(z) uses also coefficients on the anti-diagonal, be-
cause there must be one matrix in the cascade which is not “nor-
malized”,
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where the exponentia = 0 if n0 > 0, elseia = 1. TheJia takes
care of the correct form of the resulting analysis polyphase matrix
in order to obtain filters of the form of (1). Their inverse need a
multiplication withz�2 to obtain a causal matrix.
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with b̂0N=2+j = �b0j=(b
0
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0
2N�1�j), j = 0; : : : ;N=2 � 1, and

b̂0N+j = 1=b02N�1�j , j = 0; : : : ; N � 1.
Furthermore an (analysis) transform matrixTa is needed, which

in this case will be a DCT 4 defined as[Ta]n;k := cos( �N (k +

0:5)(n+ 0:5)) ; 0 � n; k < N . It can be implemented e.g. as
a fast DCT. The analysis polyphase matrix for filters as in (1) can
now be written as

Pa(z) = S
na(z) �B0(z) �

��1Y
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where� � 0 and� � 1 are the number of zero-delay matrices
and maximum-delay matrices resp., andna = n0 if n0 > 0, else
na = n0 + N . Hi andLi are defined asHi(z) := Bi(z) if
n0 > 0, elseHi(z) := Ai(z). Li(z) := Ei(z) if n0 > 0 and
� is even orn0 � 0 and� is odd, elseLi(z) := Gi(z). The
coefficients ofB0(z) which lead to coefficients ofSna(z) �B0(z)
with positive powers have to be set to zero in order to obtain causal
filters. ns � na ensures the same for the synthesis. The synthesis
polyphase matrix for perfect reconstruction is
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with a synthesis transform matrixTs such thatTa �Ts = I, and
whered = 2� . The resulting synthesis impulse responses are as
(2) with n00 = ns if n0 > 0, elsen00 = ns�N . The system delay
is

nd = � � 2N +N � 1� na � ns

As can be seen the minimum possible delay is the blocking delay
of N � 1 samples. It is obtained with� = 1, na = ns = N .
The length of the non-zero part of the analysis and synthesis fil-
ters is(� + �)N + bN=2c � max(bN=2c; na) for � > 0 and
�N+N�max(bN=2c; na) for � = 0, where max(.,.) is the max-
imum of the two values. Filter banks with the traditional standard
delay result e.g. if� = � andna = ns = N=2 is chosen, and with
a low delay if� < �. This is a complete factorization for all co-
sine modulated filter banks with contiguous impulse responses, as



shown in [12]. There it is also shown that if the transform is a DCT
4 and the coefficients ofB0(z) are such thatb0N+i = s=b02N�1�i
for i = 0; : : : ; N � 1, wheres is either 1 or -1 for alli, then
the baseband impulse responses for the analysis and synthesis are
identical, except for the sign. This can be used for the filter bank
design. The coefficients of the filter matrices determine the fre-
quency responses of the filter bank, they can be obtained e.g. with
the optimization method described in [9, 10, 11].

4. TIME VARIANCE

To make this filter bank time-varying its polyphase matrices and
their components have to be time-varying. To express this time de-
pendency the parameterm, denoting the time instance at the lower
sampling rate, is introduced,Pa(z) becomesPa(z;m), Ai(z)
becomesAi(z;m),

Ai(z;m) := z
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�J+diag(0; : : : ; 0; a
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i
N�1(m))

Ei(z) becomesEi(z;m), and so forth. This additional parameter
requires a computation which is different from the time invariant
case. Observe that if a signal first passes a time-varying system or
matrixF(z;m) and then a delayz�1, the output is the same as if
the signal is first delayed and then passes the system or matrix at
the state of the previous time step. This is an important observation
for the treatment of time-varying systems in the z-domain, and can
be written as

F(z;m) � z
�1

= z
�1

� F(z;m� 1)

This basic rule makes the computation of the inverses of the time-
varying matrices and hence the computation of the time-varying
synthesis polyphase matrix for perfect reconstruction possible.
The inverses of the filter matrices are now

E
�1
i (z;m) =

J � z
�1

� diag(e
i
N�1(m); : : : ; e

i
dN=2e(m); 0; : : : ; 0)

G
�1
i (z;m) =

J� z
�1

� diag(0; : : : ; 0; g
i
bN=2c�1(m); : : : ; g

i
0(m))

A
�1
i (z;m) � z

�2
= z

�1
� J

�diag(a
i
N�1(m� 1); : : : ; a

i
dN=2e(m� 1); 0; : : : ; 0);

B
�1
i (z;m) � z

�2
= z

�1
� J

�diag(0; : : : ; 0; b
i
bN=2c�1(m� 1); : : : ; b

i
0(m� 1));

B
�1
0 (z;m) � z

�2
=

J
ia [z

�1
� diag(b̂

0
N (m); : : : ; b̂

0
2N�1(m)) � J+

+diag(0; : : : ; 0; b̂
0
dN=2e(m); : : : ; b̂

0
N�1(m))]

with

b̂
0
N�1�j(m) =

�b0j(m� 1)

b0N+j(m� 1)b0
2N�1�j(m)

for j = 0; : : : ;N=2�1, and̂b0N+j(m) = 1=b02N�1�j (m� 1) for
j = 0; : : : ; N � 1

A delay between a time-varying matrix and its inverse results in
a time shift in the inverse, because the input to the inverse matrix
is now a delayed version of the matrix. This can be seen in
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The time-varying analysis filter bank can now be expressed as
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To obtain perfect reconstruction from this analysis polyphase ma-
trix the synthesis polyphase matrix has to have the form
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whereTa(m) �Ts(m) = I. Observe the time indices in (4). The
signal can be viewed as passing the matrices from left to right.
Since theL�1 matrices don’t introduce any additional system de-
lay their time index is stillm. TheH�1 matrices are associated
with an additional delay (z�2), and for this reason the time index
after each of these delays has to be lowered by 2 in order to obtain
perfect reconstruction, as seen in (3).na, �, and� do not change,
they are not time dependent so that the total delay is constant, as
needed for perfect reconstruction. Note that this is a very general
approach that accommodates many different ways of switching the
analysis and synthesis filters.

4.1. Switching the Number of Bands
To use the above formulation for filter banks with different num-
bers of bands, they must use signal vectorsx and matrices of the
same dimension. Assume any 2 different numbers of bandsN1,
N2, and assumeN1 > N2. They can both be described with sig-
nal vectors of sizeN1. First consider the time invariant case and
define

X
0
(z) := X(z) � S

na(z) (5)

which is the input vector for the filter matrices.X0 andX are of
lengthN1 andS(z) is of sizeN1�N1. The case withN1 bands is
obvious. For the second case,N2 bands,na = n0a �N1=N2 where
n0a is from the sizeN2 case.na andn0a must be such that both are
integers. ThenN1�N2 zeros are placed inX(z) such thatX0(z)
has the zeros around the center,X0(z) =

[X
0
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0
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(z); : : : ;X
0
N2�1(z)]

e.g. by computingX(z) = X0(z) � S�na(z) (odd numbers of
bands would lead to one non-zero value also in the center). The
filter matrices are nowN1 �N1 matrices of the form
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and so forth. Odd numbers of bands would lead to one coefficient
for z�1 in the center ofB0(z) which can be unequal to 1. Because
the filter matrices have non-zero coefficients only on the diagonal
and anti-diagonal, the zeros appear also at the transform. Since
they are known, they don’t need to be processed further and can be
omitted for the computation of the transform, so that an analysis



transform of sizeN2�N1 can be used which results from splitting
theN2 � N2 transform matrix into an upper and lower half (Tu

andTd resp.) and insertingN1 �N2 rows of zeros in the middle.
The synthesis transform is anN2 �N1 matrix which results from
splitting theN2�N2 inverse transform matrix into a left and right
half (Tl andTr resp.) and insertingN1�N2 columns of zeros in
the middle.

Ta =

"
Tu

0
Td

#
; Ts = [ Tl 0 Tr ]

Their product is theN1 �N1 matrix

Ta �Ts =

"
I 0

0
0 I

#

In the case of an odd number of bands the analysis transform would
also have one nonzero row in the middle, and the synthesis trans-
form would have one nonzero column in the middle, so that their
product would have a 1 in its center. The so defined lengthN1 sig-
nal vectors and sizeN1 �N1 filter matrices now represent a filter
bank withN2 bands. Note that the computational complexity is
the same as for signal vectors and matrices of sizeN2, since only
operations with non-zero coefficients need to be computed.

This formulation can now be used for switching between differ-
ent numbers of bands. The transition betweenN1 andN2 mode
can be done in different ways, e.g. by switchingx0(m) directly
between the forms of the time invariant cases and computing the
resulting transition forx(m), which results in a direct switch be-
tween the 2 numbers of bands with an intermediate blocksize of the
processed input during the transition, if jnaj > N2=2, as can be
seen by applying (5). Or by switchingx(m) directly between the
two forms. which results in a direct switch in the blocksize of the
processed input signal and an intermediate number of bands. The
transform matrix has to be switched such that it has the suitable
entries of zeros to maintain PR and critical sampling.

Assume the switch begins at timem0 with the switch ofx0(m)
or x(m) to the other mode. The maximum delay matrices can
be switched to the other mode while the other mode signal passes
them, one step after the other (at the lower sampling rate), since
each delays the signal by one step, and then the minimum delay
matrices and the transform are switched at once, since they don’t
delay the signal. This meansB0(z;m) is switched to the other
mode at timem = m0 + 1, Hi(z;m) at timem = m0 + 1 +
i, Li(z;m) andTa(m) at timem = m0 + �. Switching this
way ensures critical downsampling since the other mode signal is
delayed by the same number of steps independent of the switching
direction, and perfect reconstruction is maintained by using the
synthesis as in (4). A change of the filter matrices just before and
after the mode switch can be used to obtain different transition
filters. The minimum number of “windows” affected by a switch
is the number of overlapping windows, which isL. The time from
the beginning of the switch until the number of bands is in the new
mode at the analysis is the time the mode change needs to pass the
shift- and maximum-delay matrices.

If N2 = 0 then this scheme can be used for designing filters for
boundary regions of a signal, to process signals with finite extent.
This way the analysis filter bank produces the same number of
samples as in the finite signal, which can then still be completely
reconstructed, including the boundary regions.

Example
Figure 1 shows an example of a filter bank with a low system delay,
which is switched directly from 1024 to 128 bands. The filters for
the steady state case have a length of 4096 and 512 taps resp. and
a system delay of 2047 and 255 samples resp., with� = 1, � = 3,
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Synthesis baseband transition impulse responses

Figure 1. Synthesis transition baseband impulse responses for a
switch from 1024 to 128 bands.

na = ns = 1024=2. Shown are the synthesis baseband impulse
responses during the transition.
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