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ABSTRACT

This paper deals with multiwavelets which are a recent
generalization of wavelets in the context of multirate �l-
ter banks and their applications to signal processing and
especially compression. By their inherent structure, multi-
wavelets are �t for processing multi-channel signals. First,
we will recall some general results on multiwavelets and the
convergence of the iterated matrix product. Then, we will
de�ne under what conditions we can apply systems based
on multiwavelets to one-dimensional signals in a simple way.
That means we will give some natural and simple conditions
that should help in the design of new multiwavelets for sig-
nal processing. Finally, we will provide some tools in order
to construct multiwavelets with the required properties, the
so-called `balanced multiwavelets'.

1. INTRODUCTION

Wavelet constructions from iterated �lter banks, as pio-
neered by Daubechies [3], have become a standard way to
derive orthogonal and biorthogonal wavelet bases. The un-
derlying �lter banks are well studied, and thus, the design
procedure is well understood. By the structure of the prob-
lem, certain issues are ruled out: e.g. impossibility of con-
structing orthogonal FIR linear phase �lter banks. Never-
theless, by relaxing the requirement of time-invariance, it is
easy to see that new solutions are possible. As mentioned
in [12], such �lter banks are closely related to some matrix
2-scale equations leading to multiwavelets.

2. MULTIWAVELETS

Similar to the wavelet case, the multiscaling function �(t) :=

[�0(t); : : : ; �r�1(t)]
> is solution of a 2-scale equation

�(t) =
X
k

M[k]�(2t� k) (1)

where nowM[k] are r�r matrices of real coe�cients. How-
ever, in the rest of the paper, for simplicity, we will con-
centrate on the case r = 2. The properties of the scaling
function are strongly dependent on the spectral behavior of
the re�nement mask

M(!) := 1

2

X
k

M[k]e
�j!k

(2)
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By de�ning the Fourier transform componentwise for vector-
valued functions, the 2-scale equation converts to the equiv-
alent form

�̂(2!) =M(!)�̂(!) (3)

and we can then derive the behavior of the scaling function
by iterating this product [2].

In the wavelet case, M(!) is a trigonometric polyno-
mial satisfying the following two necessary constraints: (i)
M(0) = 1 and (ii)M(�) = 0 for the iterated product to con-
verge. The multiwavelet case is more tedious. As in [12], we
de�ne D(!) the determinant of M(!), and f�0(!); �1(!)g
the eigenvalues of M(!). We also de�ne

L :=

0
BB@

: : :
: : : M [1] M [0]
: : : M [3] M [2] M [1] M [0]
: : : M [5] M [4] M [3] M [2] : : :

: : :

1
CCA (4)

and

�
(n)

(!) :=M(!=2) �M(!=4) : : :M(!=2
n
) ��(!) (5)

where �(!) is the normalized interpolation function

�(!) := e
�j!=2n+1 � sin(!=2

n+1)

!=2n+1
(6)

Note that �(n)(!) satis�es

k�(n)

i0 (!)k22 + k�(n)

i1 (!)k22 = 1 (7)

given that we have orthogonalityX
k

M[k]M[2l + k]
>

= 2�0lI 8l (8)

Also, �(!) ! 1 for any �nite ! and large n, and can thus
be ignored. In the following, we will be interested in the
limit

�(!) := lim
n!1

�
(n)

(!) =

1Y
i=1

M(!=2
i
) (9)

Note that

�(!) =M(!=2) ��(!=2) (10)

We then recall the results obtained in [6, 12, 2] about the
convergence of the iterated matrix product:



Given an in�nite matrix product of size 2 by 2

�(!) :=

1Y
i=1

M(!=2
i
) (11)

where M(!) satis�es a matrix Smith-Barnwell condition

M(!)MT
(�!) +M(! + �)MT

(�! + �) = I: (12)

a necessary condition for convergence to a scaling matrix
�(!) such that �(0) is non-zero and bounded is

(i) M(0) = I, M(�) = 0 (note that �(!) has rank 2)

(ii) M(0) has eigenvalue �0(0) = 1 and j�1(0)j < 1, M(�)
has rank 1 and satis�es r0 �M(�) = 0 where r0 is a left
eigenvector of M(0) for the eigenvalue 1 (note that �(!)
has then rank 1).

3. ROBUSTNESS OF EXPANSIONS

Recently, a surprising multiwavelet with symmetry, short
compact support, orthogonality and also good approxima-
tion properties has been constructed by Geronimo, Hardin
and Massopust (GHM) for the multiscaling functions [4]
and by Strang and Strela for the multiwavelets [9]. Nev-
ertheless, the theoretical results are somehow shadowed by
computational drawbacks in applications like signal com-
pression as mentioned in [11]. An important point to re-
member is that a multiwavelet �lter bank (often abbrevi-
ated multi�lter bank) is fundamentally a MIMO (multi-
input multi-output) system that requires vectorization of
the input signal which is usually one-dimensional to pro-
duce an input signal which is r-dimensional. However, due
to some di�erences in the spectral behavior of the compo-
nents of the scaling function vector, the `lowpass' multi�lter
may have `unbalanced' channels that complicate this vector-
ization. In that case, simple methods for the vectorization
like splitting the input signal into blocks of size r lead to a
mixing of coarse resolution and details creating strong oscil-
lations in the reconstructed signal after compression as seen
in Fig. 2. Namely, one of the important issues with wavelets
in signal compression is the behavior of truncated series,
i.e. robustness to truncation of the `details' subbands. One
would then expect some class of smooth signals to be well
reproduced, i.e. one expect some kind of `eigensignals' for
the coarse approximation. For example, it would be rea-
sonable to require [1; 1; : : : ; 1; : : :]> to be preserved by the
operator L i.e.

L [1; 1; : : : ; 1; : : :]
>

= [1; 1; : : : ; 1; : : :]
>

(13)

However, most of the multiwavelets constructed so far don't
even verify this simple requirement as illustrated in Fig. 1.
A solution proposed in [11] and generalized in [13] is to

add some pre/post �ltering of the input/output signal to
adapt it to the spectral imbalance of the �lter bank. A
simple way of understanding pre�ltering is to see it as a
transform of the desired eigensignal [1; 1; : : : ; 1] into some
genuine eigensignal associated to the eigenvalue 1 of L, for
example, in the GHM case we have

L [1;
p
2; 1;

p
2; : : : ; 1]

>

= [1;
p
2; 1;

p
2; : : : ; 1]

>

(14)
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Figure 1: Left: Reproduction of the input signal
[1; 1; : : : ; 1] by a GHM multiwavelet based �lter bank with-
out pre�ltering, Right: reproduction of the eigensignal
[1;
p
2; 1;

p
2; : : : ; 1]
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Figure 2: Truncation of the expansion associated to the
details in a level 1 �lter bank based on GHM multiwavelet.
It shows on the left the poor robustness of systems based
on GHM without pre/post �ltering. The results are greatly
enhanced with some pre/post �ltering as seen on the graph
on the right.

The results obtained (Fig. 2) using this `trick' are of the
same order as the ones obtained using a plain Daubechies
�lter bank with 4 taps. However, the new system con-
structed that way is no more orthogonal. Another way of
doing pre/post �ltering is to allow non critical sampling and
to construct some projection of the input signal on V0. As
mentioned in [13, 14], an issue is to then maintain orthog-
onality and critical sampling at the same time in the case
of pre�ltering. Thus, one may rather directly design or-
thogonal multiwavelets with good balance between the two
scaling functions.

4. DESIGN OF BALANCED MULTIWAVELETS

In [12, 2], a necessary condition for the balancing of the
scaling functions has been given: in the case r = 2, we need
[1; 1]> to be a right eigenvector associated to the eigenvalue
1 of M(0). This is easily understood by looking closely

at (13). Furthermore, this implies that �̂(0) = [1; 1]> i.e.
�0; �1 are bona-�de lowpass scaling functions, and so the
approximation rule on which the Mallat algorithm is based
apply: Z

x(t)�i(t� n) dt � x(n) (15)

4.1. Complex Daubechies Multiwavelets

A simple way to construct balanced multiwavelets of arbi-
trary order is to derive them from the complex Daubechies
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Figure 3: Highly regular Daubechies based Multiwavelets
(same regularity as D14). Left: scaling functions, Right:
multiwavelets.

�lters. Daubechies �lters are constructed using the half-
band �lter:

P (z) := c(1 + z
�1
)
N
(1 + z)

N
R(z) (16)

such that P (z)+P (�z) = 1 with R(ej!) � 0 and R(ej!) =
R(e�j!). One get the usual Daubechies lowpass �lters:
DN (z) := (1+z�1)NB(z) where B(z) is a spectral factor of
R(z) with real coe�cients. We can't achieve orthogonality
and symmetry with real coe�cients, however by allowing
complex coe�cients in the spectral factorization, one can
construct symmetric, orthogonal FIR �lters [7]. Writing
[a[0]; : : : ; a[N ]; a[N ]; : : : ; a[0]] for the lowpass �lter, one can
construct matrix coe�cients:

A[i] :=

�
�Im(a[i]) Re(a[i])
Re(a[i]) Im(a[i])

�
(17)

and the re�nement mask is then with z = ej!

M(!) :=
1

2

 
NX
i=0

A[i]z
�i

+ z
�(N+1)

NX
i=0

A[N � i]z
�i

!

(18)
The multi�lter bank is clearly orthogonal and it is easily
seen that the smoothness and approximation power of the
Daubechies complex scaling functions and wavelets transfer
to the multiscaling functions and multiwavelets. Namely, by
de�ning

 (x) := �1(x) + j�0(x) (19)

where [�0; �1] is the multiscaling function associated to
M(!), we get that  veri�es the 2-scale equation

 (x) =

NX
0

a[k] (2x�k)+
2N+1X
N+1

a[2N+1�k] (2x�k) (20)

so  is the scaling function associated to the complex Dau-
bechies �lters , hence we get smoothness and approximation
power for the multiscaling functions and the multiwavelets.
We also derive that the multiscaling functions and multiwa-
velets are symmetric/antisymmetric as seen in Fig.3. How-
ever, this re�nement mask when iterated doesn't converge
properly becauseM(0) has eigenvalues 1;�1 with eigenvec-
tors [1; 1]>; [1;�1]>. We get only constrained convergence
as de�ned in [5], hence the poor behavior of this multiwa-
velet in applications as seen in Fig 4.
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Figure 4: Robustness to truncation of the �rst order details
subband of a 6 2x2 taps complex Daubechies based multiwa-
velet �lter bank and the Chui based balanced multiwavelet
with 8 2x2 taps �lter bank.

4.2. Balancing of multiwavelets

Another interesting way of constructing balanced multiwa-
velets is to balance already existing multiwavelets like the
ones constructed in [1] or [4]. The point is that we want
[1; 1]> to be a right eigenvector associated with eigenvalue
1 of M(0). The way to achieve this is to use the unitary
matrix R such that

R
>

M(0)R

�
1
1

�
=

�
1
1

�
(21)

De�ning the new re�nement mask

P(!) := R
>

M(!)R (22)

and the new 2-scale equation

 ̂(2!) = P(!) ̂(!) (23)

We then verify that

 ̂(0) =

�
1
1

�
(24)

We notice that in the iteration, R> and R cancel, except for
the �rst and last term. The convergence of the matrix prod-
uct for M imply the convergence for P and the smoothness
and approximation power are therefore unchanged. How-
ever the symmetry of the scaling functions is usually lost.
Nevertheless, the symmetry/antisymmetry of the multiwa-
velets can be maintained, by taking for the highpass re�ne-
ment mask

Q(!) := N(!)R (25)

where N(!) is the highpass re�nement mask associated to
M(!). Using Chui multiwavelets [1], we obtained orthog-
onal, compactly supported multiscaling functions / multi-
wavelets with symmetry and good approximation for the
multiwavelets and also verifying the [1; 1]> right eigenvec-
tor condition (Fig. 5). This balanced multiwavelets have
shown very good robustness in compression algorithm with-
out any pre/post �ltering (Fig. 4).

4.3. General design

A more general issue is then to describe some general de-
sign method for constructing bona-�de multiwavelets with
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Figure 5: Balanced multiwavelet with 2nd order of approx-
imation. Left: scaling functions, Right: multiwavelets.

all the desired properties. Recently Plonka and Strela pro-
posed in [8, 10] a method to increase the approximation
order of a given scaling function by what they called the
2-scale similarity transform. This transform applied to the
re�nement mask M(!) determines a new scaling function
with higher approximation order. This last one is derived
from the new re�nement mask MT (!) given by

MT (!) := T(2!)M(!)T
�1
(!) (26)

where T(!) is the transform matrix. Although this method
showed some good results, as mentioned in [10], it is not
clear how to maintain orthogonality and compact support
at the same time. Moreover, this transform is not preserv-
ing the eigenvectors or even the eigenvalues of M(0). So,
we made some modi�cation of this method by de�ning the
new re�nement mask P(!) as

P(!) := T(!)M(!)T(!) (27)

where now the transform matrices

T(!) := T
�1

1 (!)T2(2!) (28)

veri�es some weaker conditions than the ones required in [8].
This enables greater freedom in the design of the new re-
�nement mask and allows especially to maintain the [1; 1]>

eigenvector associated to the 1 eigenvalue condition onP(0).
As seen in Fig. 6, we constructed this way some highly regu-
lar biorthogonal balanced multiwavelets with compact sup-
port and symmetry starting from Chui's 1st order balanced
multiwavelet and using for example

T1(!) = T2(!) =

�
(1� z)

2 �z(1� z)

(1� z)2 (1� z)2

�
(29)

where z = e�j!. Nevertheless, the issue of maintaining the
orthogonality during this process remains open.

5. CONCLUSION

After recalling some basic facts about multiwavelets, we de-
scribed some tools to solve the problems we face applying
multiwavelets in signal processing. However, some ques-
tions remain open. We still have to develop some systematic
way to construct orthogonal balanced multiwavelets with
the desired regularity. We also only dealt with the problem
of �rst order balancing. The obvious generalization is the
preservation of higher order polynomial signals by our mul-
tiwavelet based system. Some further developments and
applications in the �elds of one dimensional signal process-
ing but also of array processing are then expected.
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Figure 6: Highly regular scaling functions obtained from
the Bat multiwavelet (support is [0; 8]).
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