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ABSTRACT

The aim of this paper is to revisit the problem of

nonlinear channel equalization. The equalization is

here viewed as the estimation, from the observation

of the channel output, of the state vector of the chan-

nel consisting of the last transmitted symbols. If the

probability density function of the state vector given

all the available observations, (the a posteriori density

function) were known, an estimate of the state vec-

tor for any performance criterion could be determined.

Alspach and Sorenson proposed in [5] an approxima-

tion by a weighted sum of Gaussian probability den-

sity functions that permits the explicit calculation of

the a posteriori density from the Bayesian recursion

relations. The application of these results to the mini-

mummean square error solution of the nonlinear chan-

nel equalization problem provides a new scheme which

consists of the convex combination of the output of sev-

eral extended Kalman �lters operating in parallel.

1. INTRODUCTION

The transmission of a message over a band limited

and/or a dispersive channel leads to the distortion of

the message. A channel introducing such perturba-

tions is modelled by a �nite-memory tapped-delay line

whose memory accounts for intersymbol interferences

(ISI) and which is followed by an additive, Gaussian

and white noise. The aim of equalization is to remove

these impairments from the received message in order

to recover the transmitted message.

High speed data transmission and satellite communi-

cations use ampli�er devices which usually work near

saturation. These ampli�er devices introduce in the

transmitted message memoryless nonlinearities which,

combined with the e�ects of transmission and recep-

tion �lters, become nonlinearities with memory. Such

channels are usually modelled by Volterra series [1].

Nonlinear channel equalization has become the subject

of considerable research interest during the past few

years. Chen et al. proposed in [2] a multilayer percep-

tron and dealt with the problem in terms of classi�ca-

tion. Biglieri et al. rather proposed in [3] a generaliza-

tion of the ISI cancellation techniques introduced in the

case of linear channel equalization. In a previous work,

[4], we investigated nonlinear channel equalization by

ISI cancellation techniques using polynomial �lters; we

pointed out the limits of such structures.

These limits lead us to revisit the problem of nonlinear

channel equalization. In this paper, we adopt for the

channel model a formulation with state equation and

observation equation. The aim of equalization is to es-

timate the state vector of the channel consisting of the

last transmitted symbols, from the received message.

For linear channel, the Kalman �lter provides a good

solution, [6]-[7]-[8]. The direct use of a Kalman �lter

for nonlinear channel requires the linearization of the

input-output relation of the channel and consequently

to use the extended Kalman �lter. This linearization

and the Gaussian assumption for the plant noise impair

the performances. Knowledge of the probability den-

sity function of the state given all available received

data provides the most complete possible description

of the state, and from this density any of the common

types of estimates (e.g., minimummean square error or

maximum a posteriori) can be determined. Except in

the linear Gaussian case, it is extremely di�cult to de-

termine this density function. In this paper, a weigthed

sum of Gaussian probability density functions is used

to approximate arbitrarily closely another density func-

tion that permits the explicit calculation of the a pos-

teriori density from the Bayesian recursion relations,

[5]. The linearization of the input-output relation of

the channel is also required and consequently, the so-

lution to the minimum mean square error equalization

problem gives a new nonlinear channel equalizer which

consists of the convex combination of the output of sev-

eral extended Kalman �lters operating in parallel. In

this paper, the channel is supposed to be known or to

have been identi�ed.

After stating the problem in section 2., the Gaussian

sum approximation is de�ned and applied to the plant



noise density function in section 3. In section 4., the

new nonlinear channel equalizer is proposed. Results

of simulations are commented in section 5. Finally, in

section 6., conclusions and outlooks are given.

2. PROBLEM STATEMENT

The transmitted sequence, the channel input fd(n)g, is

composed of indepedent symbols which belong to a �-

nite set. The state vector, D(n) of the channel consists

of the last N transmitted symbols, fd(n�k)g0�k�N�1,

where N represents the channel memory. Conse-

quently, the state vector of the system evolves accord-

ing to the linear di�erence equation:

D(n) = FD(n� 1) +Gd(n) (1)

where F is the N � N shift matrix and G, the N � 1

vector

F =

2
666664

0 0 0 : : : 0

1 0 0 : : : 0

0 1 0 : : : 0
...

. . .
. . .

. . .
...

0 : : : 0 1 0

3
777775
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2
666664

1

0

0
...

0

3
777775

Thus, the nonlinear channel output can be written as:

y(n) = h(D(n);p) + b(n) (2)

where h(:;p) is a possibly nonlinear function of D(n)

with parameters p and b(n) represents a zero-mean

white Gaussian noise sequence independent from the

input sequence, d(n). For example, if the nonlinear

channel is modelled by a transversal Volterra �lter of

order ph and memory N , then h(D(n);p) is equal to:

phX
m=1

N�1X
k1=0

: : :

N�1X
km�km�1

hm(k1; : : : ; km)d(n�k1) : : :d(n�km)

(3)

The vector p is here composed of the Volterra kernels

fhm(k1; : : : ; km)g. According to this formulation, the

equalization is equivalent to estimating the state vec-

tor D(n) from the observation of the channel output

Y
n = [y(n); y(n�1); : : : ; y(0)]. One can note here that

the estimation of d(n) can be obtained at some delayed

time (n+D) where 0 � D � (N � 1). In the case of a

linear channel (ph = 1 in Eq. 3) with additive Gaussian

noise, this problem has been resolved by the Kalman

observer, [6]-[7]-[8].

As the state vector, D(n), is a random vector, the a

posteriori density, p(D(n)jY n), provides the most com-

plete possible description of the state vector. This den-

sity is determined recursively from the Bayesian recur-

sion relations:

p(D(n)jY n) = cnp(D(n)jY (n�1))p(y(n)jD(n)) (4)

p(D(n)jY (n�1)) =

Z
p(D(n)jD(n� 1))

p(D(n� 1)jY (n�1))dD(n� 1) (5)

where the normalizing constant cn is given by

1=cn = p(y(n)jY (n�1))

=

Z
p(y(n)jD(n))p(D(n)jY (n�1))dD(n)

The densities p(y(n)jD(n)) and p(D(n)jD(n� 1)) are

determined from the equations 1 and 2 and the a priori

distributions for d(n) and b(n).

It is generally impossible to determine p(D(n)jY n) in

a closed form using equations 4 and 5, except when the

system 1-2, is linear and the a priori distributions are

Gaussian, the Kalman �lter being, then, the solution.

In the following, a procedure is de�ned that is based

on the use of the Gaussian sum representation of the

a posteriori density function in conjunction with the

linearization procedure that has proven so e�ective in

Kalman �lter applications.

3. GAUSSIAN SUM APPROXIMATION

The Gaussian sum representation pA of a density func-

tion associated with a random vector x is de�ned as:

pA(x) =

lX
i=1

�iN [x� ai;Bi] (6)

where

N [a;B] = exp f�
1

2
aTB

�1
ag=(2�)n=2jBj1=2

lX
i=1

�i = 1; �i � 0 for all i

It can be shown, [5], that pA converges uniformly to any

density function of practical concern as the number of

terms l increases and the covariance Bi approaches the

zero matrix.

Let us consider as an example, the a priori density

function of the plant noise, w(n) = Gd(n) (Eq. 1). If

fdlg1�l�q, are the q values, that d(n) can take, associ-

ated respectively with the probabilities fplg1�l�q, then

the density function of w(n), p(w(n)), is equal to:

pl if d(n) = dl; 1 � l � q (7)

0 otherwhise (8)

This density function is approximated by a weighted

sum of Gaussian density functions according that this

plant noise takes a �nite number of discrete values,

fGdlg1�l�q. This assumption yields to choose:

p(w(n)) =

qX
l=1

plN [w(n)�wl;Ql] (9)



where wl = Gdl, Ql = �IN , IN the unity matrix, and

� choosen small enougth in order that each Gaussian

density function is located on a neighborhood of wl

with a probability mass equal to pl.

4. NONLINEAR CHANNEL EQUALIZER

The main idea of the following procedure is the ap-

proximation of the density functions p(D(n)jY n) and

p(D(n)jY (n�1)) by weighted sums of Gaussian density

functions as de�ned below:.

p(D(n)jY n) =

�nX
i=1

�i;nN [D(n)� D̂i(n);P i(n)] (10)

p(D(n)jY (n�1)) =

�0
nX

i=1

�0i;nN [D(n)� D̂
0

i(n);P
0
i(n)] (11)

where D̂i(n) and D̂
0

i(n) are N � 1 vectors and P i(n)

and P 0
i(n) N � N matrices, de�ned below.

The a priori density function of the plant noise, w(n),

is also supposed to be approximated by a weighted

sum of Gaussian density functions as de�ned in sec-

tion 3. and the a priori density function of the additive

noise, b(n), is supposed to be Gaussian with variance

�2b . With these assumptions and the linearization of

the nonlinearity h(:;p) relative to D̂
0

i(n), the Bayesian

recursion relations 4-5 can be derived easily, [5], and

yield for parameters �0n, �
0
i;n, D̂

0

i(n), P
0
i(n), �n, D̂i(n),

P i(n),�i;n, in the case of the Gaussian sum approxi-

mations 10-11, the following relations:

Prediction resulting from the derivation of Eq. 5

�0n = q�n�1 (12)

�0i;n = pl�j;n�1 (13)

D̂
0

i(n) = FD̂j(n � 1) +wl (14)

P 0
i(n) = FP j(n� 1)F T +Ql (15)

Estimation resulting from the derivation of Eq. 4

�n = �0n (16)

D̂i(n) = D̂
0

i(n) +Ki(n)(y(n) � h(D̂
0

i(n);p)) (17)

P i(n) = P 0
i(n)�Ki(n)Hi(n)P

0
i(n) (18)

Ki(n) = P 0

i
(n)Hi(n)

T [Hi(n)P
0

i
(n)Hi(n)

T + �2
b
]�1 (19)

Hi(n) =
@h(D(n);p)

@D(n)
j
D(n)=

^D
0

i
(n)

(20)

�i;n =
�0i;n�i;nP�0
n

i=1 �
0
i;n�i;n

(21)

�i;n = N [y(n)� h(D̂
0

i(n);p);Hi(n)P
0

i
(n)Hi(n)

T + �2
b
]

The estimated state vector, D̂(n), of the state vector

D(n), solution to the minimummean square error esti-

mation problem is given by the conditional expectation,

E[D̂(n)jY n] with associated error covariance matrix,
�P (n) de�ned as E[(D(n)�D̂(n))(D(n)�D̂(n))T jY n].

It yields the following equations:

D̂(n) =

�nX
i=1

�i;nD̂i(n) (22)

�P (n) =

�nX
i=1

�i;n(P i(n)

+(D̂i(n) � D̂(n))(D̂i(n) � D̂(n))T ) (23)

One can note here that the equations 14-15 and 17-

20 are those of the extended Kalman �lter and conse-

quently that D̂(n) (see Eq. 22) is the convex combina-

tion of �n extended Kalman �lters operating in parallel.

The major drawback of this scheme is the growth of the

number of terms used in the Gaussian sum approxima-

tion (see Eq. 12). A way to reduce this number of terms

is to consider that the Gaussian sum approximation for

p(D(n)jY n) is reduced to only one Gaussian density

function with mean D̂(n) and covariance matrix �P (n)

after the estimation procedure. This means that after

the estimation procedure, �n is forced to be equal to

1, D̂i(n) equal to D̂(n), P i(n) equal to �P (n) and �i;n
equal to 1. This is a proper assumption because the

density function p(D(n)jY n) must be only located on

one possible state vector. This assumption reduced to

q the number of extended Kalman �lters. The �gure 1

shows the scheme resulting with equally probable (�1)

binary channel input symbols, d(n). This scheme is

evidently followed by a thresholding device in order to

recover estimated symbols belonging to the channel in-

put alphabet.

To start the procedure, it is necessary that the proba-

bility density function prescribed for the initial state,

p(D(0)), be correctly represented as a Gaussian sum.

We propose to use:

p(D(0)) =

qNX
i=1

(

NY
l=1

pl)N [D(0)� D̂i(0);P i(0)] (24)

where D̂i(0) is equal to one of the qN possible com-

binations of a N � 1 vector with components choosen

among fdlg1�l�q and P i(0) = �0IN with �0 small.

5. SIMULATIONS

In this section, the novel equalizer is compared with

the transversal Volterra equalizer, solution to the min-

imum mean square error equalization problem. Two

nonlinear channels modeled by Volterra �lters of order

2 and memory 2 are considered. For both channels, the

linear kernels are [1; 0:5] whereas the quadratic kernels



are [0:1; 0:1; 0:025] for the �rst one and [0:9; 0:9; 0:225]

for the second one. The nonlinear ISI introducted by

the second channel are consequently more important

than the ISI introduced by the �rst one. A binary se-

quence is chosen to drive the channel and the equalizer

scheme represented in �gure 1 is therefore used. The

tables 1 and 2 collect the bit error rates at the out-

put of a transversal linear equalizer with memory 9,

of a transversal Volterra equalizer of order 2 and with

memory 9 and of the novel equalizer.

For the �rst channel, when no noise is present at the

output, all the considered schemes can equalize the

channel. Whereas, when a noise with signal to noise

(SNR) equal to 10dB is present at the output, one can

note the improvement of the performances in terms of

bit error rate by the novel scheme. Although, when

the order of the transversal Volterra equalizer grows

(here from 1 to 2), the bit error rate decreases, the new

equalizer divides the bit error rate about by 3. One

can think that the increase in the order of the Volterra

equalizer may give results equivalent to the ones of the

new equalizer but, then, the complexity of the Volterra

equalizer would be useless increased. The introduction

of a delay,D, in the estimation of the transmitted sym-

bol also permits to reduce the bit error rate.

For the second channel for which the nonlinear ISI are

important, even when there is no noise at the output,

only the new scheme is able to correctly equalize this

channel.

6. CONCLUSION

In this paper, a new nonlinear channel equalizer is pro-

posed which gives good performances compared with

the ones of the transversal Volterra equalizer. How-

ever, although this new scheme is full of promise, it is

not fully adaptive in the sense that the parameters, p,

of the nonlinear function h(:;p) and the additive noise

variance must be known. Identi�cation techniques, as

used in [7], may be applied directly in parallel with this

scheme. Nevertheless, some drawbacks in the unique-

ness of the parameters, p, may appear. Our research

is moving towards an adaptive scheme.
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Figure 1. New nonlinear channel equalizer for

a binary channel input

Channel 1 D = 0 D = 0 D = 1

SNR +1 10dB 10dB

No equalizer 0 0:0359 0:4613

Linear equalizer 0 0:0080 0:0066

Volterra equalizer 0 0:0077 0:0056

Novel equalizer 0 0:0024 0:0015

Table 1. Bit error rates

Channel 2 D = 0

SNR +1

No equalizer 0:2494

Linear equalizer 0:2326

Volterra equalizer 0:2127

Novel equalizer 0:0001

Table 2. Bit error rates


