
5. SIMULATION RESULTS

We are now able to determine optimal step-sizes for min-
imizing the steady-sate error. Figure 2 depicts the MSE
E[je(k)j2] as a function of the step-size � for 
at fading
Rayleigh channel and speeds of 8,100 and 237Km/h, when
using a T�spaced transversal equalizer of order M = 3.
The optimal step-sizes for an SNR=19.2dB and these speeds
are �opt = 0.02,0.21 and 0.42, respectively. Also the MSE
is relatively 
at around the optimal value so that hitting
precisely the optimal value is not a very critical issue. Com-
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Figure 2: Optimal step-size for DFE-LMS algorithm.

parisons of these theoretical values with simulation results
and optimal step-sizes for minimizing the BER will be dis-
cussed in a section further ahead together with the DFE-
RLS algorithm.
Similar to the optimal step-sizes we are also able to de-

termine optimal forgetting factors � for the RLS algorithm.
Figure 3 depicts the MSE as a function of the forgetting fac-
tor � for Rayleigh fading channel with small delay spread
and speeds of 8, 100 and 237Km/h. The optimal forgetting
factors for an SNR =19.2dB and these speeds are �opt =
0.99,0.95 and 0.9, respectively. Also the MSE is relatively

at around the optimal value so that hitting precisely the
optimal value is not a very critical issue.
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Figure 3: Optimal forgetting factor for DFE-RLS algorithm.

Figure 4 compares simulation and theoretical result over
a wide range of SNR when a DFE equalizer structure is
deployed. The theoretical results can readily be extended to
this equalizer structure. The experiment includes impulse
shaping by a square-root raised cosine �lter. We compared a
pure LMS, a pure RLS solution (upper and lower continuous
lines) and a hybrid LMS/RLS solution (dashed line). As

the �gure shows their di�erence is very small and very well
described by our theoretical bound (upper dotted line). The
value denoted by 'x' in the �gure de�nes the required BER
according to the standards. The algorithm will be used in
a hand-phone that is currently under development.

Figure 4: BER for 
at fading channel at speed=100Km/h.
DFE-RLS and DFE-LMS: continuous lines. DFE-
RLS/LMS: dashed line, optimal equalizer: lower dotted line,
theoretical equalizer bound: upper dotted line.

6. CONCLUSIONS

Our theoretical investigations as well as our simulations in-
dicate that the LMS and the RLS algorithms exhibit similar
performance in their tracking behavior when used under IS-
136 conditions. Both meet the 3% BER bound as required
by standard for Doppler speeds up to 100Km/h and small
delay spread. Hence the LMS algorithm with much lower
complexity can be applied for low delay spread environ-
ment. Finally, in order to meet higher Doppler e�ects such
as that of PCS bands some modi�cation of the adaptive
schemes are required and will be presented in a future re-
port.
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Substituting for �w from (9), we �nally get
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For the update error e(k) we use the relation

E[je(k)j2] = 
M�
2
uE[k ~wk�1k

2
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2
g ;

and obtain for �2u = 1

lim
k!1

E[je(k)j2] =

M�w

(1� f(1� �
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If we compare this result with the one from [1] we note that
in the �rst term 1=� is replaced by 1=[1 � f + f�
]. In
fact, as �! 0, the steady-state error energy will not grow
beyond all limits but will remain bounded by the equalizer

uctuations �w. Thus, (18) is a more accurate description.

Let us consider the 
at Rayleigh fading channel for which
the receiver sequence u(k) can be assumed to be a white
random process with 
 = 1=M . If we further recall
that the compound noise �2g = E[jW [v(k)] + ee(k)j

2] =

E[jwk(0)j
2]�2v+�2e, and that �w = 2(1� f)E[jwk(0)j

2], we
�nd the �nal expression for 
at Rayleigh fading
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Thus, it is possible to compute the optimal step-size for
minimal steady-state error. We obtain a quadratic equation
in the step-size �

�2 + 2�A+B = 0 ; (20)

with the terms

A =

�
M(1� f)

f

�
(1 +C)

B =

�
M(1� f)

f

�
(A� 2C)

C =
jwk(0)j

2

ME[��(k)][jwk(0)j2�2v + �2e ]
:

The optimal solution is then given by

�opt = �A+
p
A2 �B : (21)

3.2. Tracking of the RLS Algorithm

The same method that has been applied for the LMS al-
gorithm can also be applied for the RLS algorithm. The
following terms can be computed beforehand:

E[P�1k ] = �E[P�1k�1] +Ruu =
Ruu

1� �
; (22)

E[��(k)] = E

�
1

ukPku�k

�
=

1

M

1

1� �
; (23)

where for both we assumed steady-state, i.e, the initial
terms P�1 = �I has deceased. The RLS update equation
reads in terms of the parameter error

~wk = ~wk�1 +�wk �Pku
�

ke(k) : (24)

Di�erent to the LMS algorithm we now consider
E[ ~w�kP

�1
k

~wk] and following the same procedure we obtain

~w�kP
�1
k ~wk = ~w�k�1P

�1
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�1
k �wk
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We are now faced with one mayor di�erence compared to
the LMS algorithm. Because of the inner matrix P�1

k
in

the middle of the expressions, the time variations e�ect the
terms in a di�erent manner. In other words we cannot
expect to compute E[ ~w�k�1P

�1
k
�wk] as easily as before. If

we, however, focus on the 
at Rayleigh fading case, the acf
matrix Ruu = I and the expressions become very similar.
We only have to translate the forgetting factor � into an
equivalent step-size � by the formula

� = (1� �)M (26)

and we obtain

lim
k!1
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2
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The compound noise �2g = kWk
2�2v+k1�WC�Ak2 or for a


at Rayleigh channel even simpler, �2g = E[�2vjck(0)j
2=[�2v+

jck(0)j
2]2] +E[�4v=[�

2
v + kck(0)k

2]2].

4. COMPUTING THE BER

Although the steady-state-error energy is a good measure
for the tracking performance of an equalizer, one is more
interested in the �nal BER for such systems. We therefore
need to relate the steady-state error energy to the BER.
To this end, we �rst note that the outcome of the linear
equalizer �lter ẑ(k) is an estimate of s(k), i.e.,

ẑ(k) = s(k)� e(k) : (28)

In the steady-state situation the error term e(k) plays the
role of additive noise. Using (1) and (28) we have

ŝ(k) = dec[ẑ(k)] = dec[s(k)� e(k)] (29)

� dec[s(k)� g[z(k)]� ea(k)] : (30)

For a Rayleigh fading channel and additive Gaussian
noise the BER for the di�erentially encoded case is given
by [5,6]

BER =
1

2 + SNR
: (31)

For the LMS algorithm the SNR is given by

SNR�1LMS =
2(1� f)

(1� f + �f

M
)(2� �)

�
�2v

E[jwk(0)j2]
(32)

+
2� �(1�ME[��])
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�
�
2
v +

�2e
E[jwk(0)j2]

�
:

The optimal step-size for minimum BER can be obtained by
di�erentiating (31) with respect to �. The result for RLS
is similar and can be obtained by substituting 2 � �(1 �
ME[��]) by 2 and � = 1� �=M in the above expression.



These assumptions will be listed brie
y without further ex-
planation. The reader is referred to [4].

1. Input Statistics
The white symbol sequence s(k) is linearly �ltered by
the channel C and thus the received sequence u(k) =
C[s(k)]+v(k) is expected to be correlated. We assume
that the received sequence has nearly Gaussian statis-
tics. We also assume the additive noise v(k) to be a
Gaussian random process.

2. Approximation
The output error is given by

e(k) � ea(k) + g[z(k)] : (1)

where the a-priori error

ea(k)
�
= z(k)� ẑ(k) = uk[wk�1 � ŵk�1] = uk ~wk�1 ;

(2)
and the error function describing the equalizer imper-
fection is de�ned as

g[z(k)]
�
= dec[z(k)]� z(k) : (3)

3. Equalizer Imperfection
When (1) is compared to a linear system identi�cation
scheme, the term g[z] plays the role of additive noise.
Note that g[z] can also be expressed as

g[z] = (1�WC �A) [s(k)]�W [v(k)] ; (4)

where W is an operator that describes the feedforward
part of the equalizer coe�cients. The �rst term in (4)
describes the equalization e�ect. If the equalization
is perfect, it is close to zero. This is rarely the case,
however, and we therefore have to deal with equalizer
imperfection.

4. Channel Model
An approximate model for each path of the channel is
an AR process with autocorrelation function

Rn(�) = J0(2�f�) (5)

In order to simplify matters we assume a channel model
with a simple one order process describing its dynamics
and combine the driving terms into one new white noise
term.

ck = f ck�1 +
p
1� f2 qk (6)

u(k) = skck + v(k) (7)

where qk is a white complex-valued Gaussian vector
random process of unit variance, i.e., E[kqkk

2
2]= 1 for

a one path model or twice that amount for a two path
model. The row vector sk consists of the transmitted
symbol sequence s(k).

5. Reference Model FluctuationsWe assume that the
dynamic of the reference model equalizer behaves like
the channel, i.e., it follows the same model (6):

wk = f wk�1 +
p
1� f2 qk : (8)

This is true in particular when only one coe�cient f
is used with values close to one (as it is the case here).
The variance of the 
uctuations becomes

�w = E[kwk �wk�1k
2] = 2(1 � f)E[kqkk

2] : (9)

6. Correlations
In order to continue we assume that all processes
u(k); g[z(k)], and qk are mutually independent. Note
that if the equalizer imperfection is caused mainly by
the linear part (1�WC�A), it will be correlated with
the received sequence u(k), and this assumption does
not hold. We thus consider two cases: one for which
the linear part is small but uncorrelated to the signal,
the other where it is part of the signal (see (30) ahead).
We will later give the results in form of bounds between
these two cases.

3. TRACKING THEORY

3.1. Tracking of the LMS Algorithm

We �rst write the LMS update equation

wk = wk�1 + �(k)u�ke(k) (10)

in terms of ~wk = wk � ŵk as

~wk = �wk + ~wk�1 � �(k)u�ke(k) ; (11)

with �wk = wk � wk�1. As long as no error occurs we
simply have e(k) = uk ~wk�1+ g[z(k)]. We replace the step-
size �(k) by the projection step-size ���(k) with

��(k) = 1=kukk
2
2

and calculate the quadratic l2� norm of the parameter error
vector

k ~wkk
2
2 = k�wkk

2
2 + k ~wk�1k

2
2 + �
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We take the expectation of both sides and use the following
terms:

E[��(k)juk ~wk�1j
2] = 
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2
2 (13)
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with 
 between zero and one depending on the correlation
of the received sequence. The derivation for the last line is
somewhat lengthy and therefore not given here.

With these assumptions, (12) now reads
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In steady-state, E[k ~wkk
2
2] = E[k ~wk�1k

2
2] and (15) becomes
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ABSTRACT

Optimum detection in randomly time-varying chan-
nels requires an e�cient adaptive receiver struc-
ture. The complexity of signal processing in the re-
ceiver is limited by the amount of processing power
and power consumption of the receiver. Therefore,
e�ciency and convergence of adaptive matched �l-
tering and equalization techniques are very impor-
tant. We extend common results in tracking theory
for system identi�cation to the equalization case for
systems with short impulse response. Unlike in sys-
tem identi�cationwhere a steady-state error energy
is minimized, the optimization criterion here is the
minimum of the BER. However, they are related by
a monotone function and therefore minimizing the
BER is equivalent to minimizing the steady-state-
error energy. Optimum parameters for LMS as well
as RLS algorithms are derived and simulation re-
sults indicate that under the conditions de�ned in
the TDMA standards and small delay spread, the
performance of the two methods is comparable.

1. INTRODUCTION

Burst transmission of data through frequency and time se-
lective fading channels requires fast and e�cient adaptive
signal processing techniques. The receiver should be able
to detect the data with relatively low signal to noise ratio
and in the presence of Rayleigh distributed multiplicative
disturbances and fast variation of the channel impulse re-
sponse due to the Doppler e�ect. Although it is known how
a communication system with additive noise performs for
an ideal equalizer, the tracking e�ects of the equalizer itself
with a randomly time-varying channel have not been inves-
tigated. Usually, slow fading channels are assumed so that
the e�ect of the equalizer is much smaller than the BER
caused from the Rayleigh channel. The IS-136 standards
however, require the 3% BER also for Doppler speeds up to
100Km/h. In this case the tracking noise of the equalizer
becomes much larger than the error caused by the Rayleigh
channel. Hence, any analysis of the performance of such
a communication system must take the equalizer tracking
noise into account. Note that tracking analyzes for LMS
and RLS algorithms in the context of system identi�cation
can be found in literature (see[2,3]). In this paper we show

1. How to extend the tracking theory from [2,3] to the
equalization case.

2. How to compute the steady-state-error energy and

3. minimize this energy with respect to the free parame-
ters.

4. How to map the steady-state-energy to the BER.

2. THE DFE REFERENCE MODEL

In order to treat the equalization problem like an identi-
�cation problem, we assume that there exists an optimal
equalizer (model reference) with the structure depicted in
Figure 1. The reference model consists of a linear �lter that
performs an equalization of the channel. Since a general
channel can be perfectly equalized only by a �lter of (dou-
ble) in�nite length, a �nite (and general small) �lter order
can only achieve a rough equalization. The nonlinear deci-
sion device (slicer) following the equalizer guarantees that
the outcome of the reference model equals the transmitted
signal s(k �D), where we allow for a delay of D samples.
The di�erence of the reference model output s(k �D) and
the estimate ẑ(k) leads to the error e(k) that is used for
updating the estimates ŵk. A �nal decision device delivers
estimates ŝ(k�D) of the transmitted sequence. In the fol-
lowing the delay D will be dropped for convenience. The
outcome of the linear part is denoted z(k) = ukwk+sk�1ak
where the sampled receiver values have been combined in
a row vector uk and the �lter taps in a column vector wk

for the feedforward and ak for the feedback part. In a com-
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Figure 1: Model reference structure for DFE equalizer.

panion paper [4] we gave six assumptions on input statistics
and channel characteristics in order to pursue the analysis.


