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ABSTRACT

New Constant Modulus (CM) algorithms are presented that
are based on soft constraint satisfaction. The stationary
points of an algorithm in this family is studied for an AR(p)
channel and it is shown that Ding-type Undesirable Local
Solutions (ULS) do not exist. This is due to the normalisa-
tion of the gradient vector and the soft nonlinearity used in
these algorithms. Error Performance Surfaces (EPS) and
convergence trajectories from arbitrary initialisations are
presented for various channels that support the analytical
�ndings.

1. INTRODUCTION

Numerous Blind Equalisation (BE) algorithms have been
developed for the recovery of digitally transmitted data
[5, 9, 3, 1, 8, 10]. The BE problem is conventionally formu-
lated within the context of the baseband model of transmis-
sion shown in Fig. 1 where ak is the transmitted discrete
symbols, wk is the channel noise, xk is the equaliser in-
put, yk is the equaliser output and âk is the output of the
decision device. The equalisation objective is to achieve
âk = ak��, where � is a delay factor.

EQUALISATION
ALGORITHM

kw

θ(  )z

a
k âk
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Figure 1: Baseband model for digital communications.

The existing algorithms that minimise a nonlinear func-
tion of the equaliser output yk possess ULS and the \eye" is
often left \closed" after convergence. The Normalised CM
algorithm (NCMA) proposed in [4, 7, 6] is based on solving
the deterministic optimisation problem

min
�k+1

�
k�k+1 � �kk

2

2

	
st. jXH

k �k+1j
p = 1; p = 1; 2; 3; : : : (1)

where �Tk = [�0jk �1jk : : : �N��1jk
] is the equaliser vector

at time instant k and XH

k
= [xk xk�1 : : : xk�N�+1

] is the

input vector to the equaliser. We use respectively (�)T and
(�)H to denote the transpose and the Hermitian transpose
of a vector.

For any p 2Z+, the a posteriori constraint jXH

k �k+1j
p=

1 leads to the update equation

�k+1 = �k +
�

kXkk22
(

 (yk)z }| {
sgn(yk)�yk)| {z }

	(yk)

Xk (2)

where 	(yk) is the \error function" and  (yk) is the Zero-
memory Non-Linearity (ZNL). In [6], (2) (with � = 1)
is shown to be an exact solution of (1). It is important
to observe, however, that there is no formal justi�cation
in the formulation of the blind equalisation problem as in
(1) other than around a Desirable Local Solution (DLS)
where the constraint jXH

k �k+1j = 1 makes sense since �k
is generally varying much more slowly than Xk and hence
jXH

k
�kj � jXH

k
�k+1j = 1. On the other hand, when �k is

far from a DLS, it is not necessary to enforce jXH

k �k+1j = 1
at each iteration. In NCMA, however, the a posteriori
constraint determines the adaptation rule regardless of the
proximity of the equaliser weights to a DLS. Although a
step-size is introduced at the last-stage in [6] that softens
the constraint, this does not change the properties of the
ZNL and hence the EPS.

2. SOFT CONSTRAINT SATISFACTION (SCS)
ALGORITHM

Consider the deterministic Lagrange optimisation problem

min
�k+1
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where � is the Lagrange multiplier and R is a dispersion

constant that is de�ned in the sequel. We have

yk
4

= X
H

k �k; sk
4

= X
H

k �k+1 (4)

By di�erentiating (3) with respect to the real and imaginary
parts of �k+1, one can obtain

�k+1 � �k + �XkX
H

k �k+1 = 0 (5)



If (5) pre-multiplied by XH

k , the optimum Lagrange multi-
plier, ��, can be solved as

�� = �
1

kXkk22
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The corresponding update equation is

�k+1 = �k � ��XkX
H

k �k+1 (7)

For a non-trivial update which minimises k�k+1 � �kk22 ex-

actly, we have sk = R sgn(yk) where sgn(re
j!)

4

= ej! [6] .
Thus, the ZNL is determined since (6) becomes

�� = �
1

kXkk22
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jykj

R

�
(8)

Unlike NCMA, we use a soft constraint (by introducing a
step-size, �, in (6), (7)) and write (7) by substituting (8) as

�k+1 = �k +
�

kXkk22
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jykj
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XkX

H

k �k+1 (9)

IfXH

k �k+1 = R sgn(yk) is used on the r.h.s of (9), we get the
NCMA update which is known to possess ULS. However,
after introducing �, XH

k �k+1 6= R sgn(yk) unless � = 1.
Therefore, we divert to another route by pre-multiplying
(9) with XH

k which yields

X
H

k �k+1 =
yk

1� �(1� jykj=R)
(10)

Therefore instead of substituting XH

k �k+1 = R sgn(yk) in
(9), we use (10) and obtain the update equation of the SCS
algorithm as

�k+1 = �k +
1

kXkk22
	(yk)Xk (11)

	(yk)
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=
yk

1� �
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1� jykj

R

� � yk (12)

Note that, if we substitute � = 1 in (11), the SCS algorithm
reduces to the NCMA. In (11), for R = 1, the step-size �
a�ects the error function as shown in Fig. 2. Note that,
	(yk) = 0 for jykj = 1 which is the CM property. Unlike
the NCMA, when � 2 (0; 1), the ZNL in the SCS algorithm
does not perform any hard limiting on the equaliser output.
From this view point, the NCMA update is derived in an
extreme condition.

From (11), (12), the update equation of the SCS-1 al-
gorithm is obtained as

�k+1 = �k +
�

kXkk22

�
1�

jykj

R

�
ykXk (13)

This corresponds to retaining the �rst term in the series

expansion of (12) around
�
1� jyk j

R

�
= 0, and hence the

name SCS-1.
The value of R in the SCS-1 algorithm can be deter-

mined from the gradient vector of the unnormalised algo-
rithm [6], based on the approach in [3] as

R =
Efjak j

3g

Efjak j2g
(14)
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Figure 2: Error function 	(yk) with R = 1.

3. STATIONARY POINTS FOR AR CHANNELS

For an AR(p) channel of the form [2]

C(z) =
1

1 + �z�p
; 0 < j�j < 1 (15)

we show that Ding-type ULS does not exist for the SCS-1.
Let us assume an FIR equaliser

�(z) =

mX
i=0

�iz
�i
; m � p (16)

We start by hypothesising that as in most BE algorithms
that use signals sampled at the symbol rate, ULS of the type
�� = [0 0 : : : �m]

T (�m 6= 0) exists [2]. To be a stationary
point �� must satisfy
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where y��
k

= xk�m�m and 0 is the null vector. In other
words
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for i = 0; 1; : : : ;m. Due to (15), xk�1, : : :, xk�p+1 are statis-
tically independent for i.i.d channel input [2]. If the normal-
isation kXkk

2

2 did not exist then using this independence,
the system of equations in (18) would reduce to a single
equation (for statistically stationary xk), which yields

j�mj =
Efjxkj

2g

Efjxkj3g
(19)

However, in our case, due to the normalisation we have the
following m+ 1 equations

j�mj =
Ef(kXkk

2

2)
�1xk�mx

�

k�ig

Ef(kXkk22)
�1jxk�mjxk�mx�k�ig

(20)

for i = 0; 1; : : : ;m. Since, in general there is no unique
�m that satis�es all equations in (20), the SCS-1 algorithm
does not have ULS of the type �� = [0 0 : : : �m]

T for the
channel in (15).



4. SIMULATIONS

In order to support the result in the previous section, the
channel is chosen as

C1(z) =
1

1 + 0:60z�1
(21)

A two-tap equaliser is used; � = [�0 �1]
T and BPSK symbols

are transmitted. As clearly indicated by Fig. 3(a), there are
no ULS for the SCS-1 algorithm. However, if normalisation
of the gradient vector is omitted in (13), two ULS appear
around �� � �[0 0:6] as shown in Fig. 3(b).

A maximum-phase channel with the transfer function

C2(z) = 0:49 + 0:70z�1 + z
�2 (22)

is also used. The EPSs for the SCS-1 and NCMA are shown
in Fig. 4. The NCMA clearly has many ULSs but the SCS-
1 algorithm has only two DLSs. Convergence trajectories
from various initial conditions are shown Fig. 5, where the
SNR at the channel output is chosen as 20dB. For some
initial equaliser parametrisations NCMA converges to ULS
whereas the SCS-1 algorithm converges to DLS consistently.

Finally, the channel is chosen to have complex impulse
response coe�cients;

C3(z) = 1 + (0:50 + j1:11)z�1 (23)

+(0:25� j0:84)z�2 � (0:35� j0:07)z�3

and 16-QAM symbols are transmitted. An 11-tap equaliser
is employed with its center-tap initialised to 1 + j. The
Open-Eye Measure (OEM) is obtained for the NCMA and
SCS-1 algorithms which is de�ned as

OEM(k) = (M � 1)
kTkk1 � kTkk1

kTkk1
(24)

where Tk represents the combined channel and equaliser
and M is the number of amplitude levels in ak . The eye
is open (closed), if OEM(k) < 1 (� 1). The SNR is 30dB
and � = 0:1 for both algorithms. The results are averaged
over 20 trials and shown in Fig. 6. Both algorithms open
the eye and the SCS-1 algorithm has better steady-state
performance.

5. CONCLUSIONS

The family of SCS algorithms is presented for blind chan-
nel equalisation. The proposed algorithms have a more
favourable, error performance surface than the well-known
algorithms in the same class. Currently research in this area
is concentrated upon the generalisation of the properties of
the error surface, imposing multiple constraints [11] and ex-
tension of this algorithm to fractionally-spaced equalisers.
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Figure 5: Convergence trajectories of the (a) NCMA and
(b) SCS-1 algorithms for C2(z).

SCS−1
NCMA 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−15

−10

−5

0

5

10

15

20

CLOSED−EYE

OPEN−EYEO
E

M
(k

) 
in

 d
B

’s

DISCRETE−TIME, k

Figure 6: Open-eye Measure for C3(z) and 16-QAM signal
with NCMA and SCS-1 algorithms.


