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ABSTRACT

The gradient-descent-based Constant Modulus Algorithm
(CMA) is commonly thought to converge much more slowly
than its Least Mean Square (LMS) counterpart, particu-
larly for quadrature-amplitude-modulated (QAM) signals.
Experiments shown in this paper indicate that in fact
there is no substantial di�erence in the convergence rates
of the two methods in the important special case of con-
stant envelope signals (e.g., FM and FSK). For both CMA
and LMS algorithms the convergence for nontrivially fre-
quency-modulated signals depends on the same eigenvalue
disparity problem that a�ects all gradient-descent tech-
niques.

1. INTRODUCTION

This paper addresses the common perception that the Con-
stant Modulus Algorithm (CMA) converges slowly. One
implication of this perception is a common belief that CMA
should only be used as a last resort or an interim step in
the design of digital and analog communications systems.
Another implication is that new, better, and, in particu-
lar, faster blind adaptive algorithms need to be developed
to replace CMA. In this paper we show that in fact CMA
converges at approximately the same asymptotic rate as an
LMS-adapted �lter for constant envelope inputs.

2. BACKGROUND

The beginning of modern data communications can be
marked by Bob Lucky's 1965 BSTJ paper on adaptive
equalization. The concept of using an adaptive digital �l-
ter to compensate for the distortion introduced by a tele-
phone channel led to signi�cant increases in the transmis-
sion rates achievable over that medium. We should note
that Lucky's equalizer was \blind", and did not need to
know the transmitted data sequence in order to adapt the
�lter's coe�cients. The simple nature of the modulation in
the telephone modems of the day made this possible, but
his \zero-forcing" algorithm proved inadequate when the
modulation complexity was increased to QPSK and 8-PSK
to improve data throughput.

To deal with these higher-order modulations, the concept
of equalizer training was introduced. A known sequence was
transmitted at the begining of a communications session to
\train" the equalizer. Since most digital communications
systems were of a point-to-point nature, the use of training

procedures upon link initialization was at the time both ac-
cepted and e�ective. Blind techniques were �rst suggested
as solutions to equalization problems in high-rate digital
communications in the early 1980s [1] [2]. For ten years
or so, interest in these techniques languished. Part of the
reason for this was that virtually all digital communica-
tions systems at the time were still point-to-point. In fact
a large measure of the current interest in blind equalization
stems from the desire to use digital modulation in point-to-
multipoint and broadcast applications in which \training at
startup" is impractical or impossible. An important practi-
cal example is the use of digital transmission for advanced
and \high-de�nition" television distribution.

The second reason for adhering to the tradition of using
training is the perception that blind equalization techniques
converge orders of magnitude more slowly than RLS- and
even LMS-based �lters. To remedy this perceived prob-
lem, researchers have suggested a number of alternatives,
including, among others, the use of block and RLS-like
adaptation (e.g., [3]), �ltered-regressor and quasi-Newton
approaches [7], and abandonment of the CMA cost func-
tion in favor of higher- and second-order-statistical meth-
ods [6]. The study presented here takes another course, that
of showing what factors limit the convergence performance
of a CMA-based equalizer. In this paper we show that
in certain important cases CMA converges at exactly the
same asymptotic rate as LMS. This approach also lays the
groundwork for understanding the converence speed limita-
tions in the case of QAM signals.

3. TECHNICAL APPROACH

The convergence behavior of a CMA-directed �lter can be
analyzed in three distinct steps: its response to sinusoidal
inputs, its response to constant envelope signals with non-
zero bandwidth (such as FM, FSK, and n-PSK signals), and
its response to non-constant envelope, non-zero bandwidth
signals, such as QAM. The �rst step was analyzed in [5], us-
ing an adaptation model developed in [4] to explain CMA's
signal capture behavior. In light of the perceived \slowness"
of CMA, [5] reported the following surprising results: (1)
the eigen�lter corresponding to the sinusoidal input cap-
tured by a CMA-directed �lter converged at exactly the

same rate as it would have in an LMS-directed �lter, and (2)
the eigen�lter associated with a sinusoid being suppressed
by the CMA-based actually converged (to zero) at twice the
rate induced by an LMS-directed �lter. Thus, far from con-



verging slower than LMS, the CMA-directed �lter reacted
to isolated, statistically independent narrowband inputs as
fast or faster than LMS did.
This paper addresses the second step, the extension of

the work in [5] to the case of non-zero bandwidth, constant-
envelope signals. Speci�cally we seek to show that:

� In response to an FM signal, a CMA-based �lter of
a given length and with a given adaptation constant
converges at the same asymptotic rate as an LMS-based
�lter,

� The asymptotic convergence rate of the CMA-adapted
�lter is limited by the eigenvalue disparity of the input
signal in exactly the same way and by the same amount
as an LMS-based �lter, thus strongly suggesting the
utility of RLS-style recursions for this case.

Modulating signals include bandlimited noise, smaller
sums of sinusoids with frequency di�erences below the fre-
quency resolution limit of the �lter, and sums of sinusoids
with frequencies on the bin numbers for the selected �lter
lengths. The last case is the easiest to analyze in terms of
initial convergence rates, but it is also the most likely to
converge to a suboptimal �lter.
For both the CMA and LMS cases the adaptive �lter

output y(k) is given by

y(k) = w
H

k � xk (1)

where the superscript H indicates Hermitian transpose.
The complex LMS algorithm uses e(k) = d(k) � y(k) for
the error function with a cost function equal to half the ex-
pected value of the squared magnitude of the error. The
resulting update equation is given by

wk+1 = wk + �e
�(k)xk (2)

The error function e(k) = 1 � jjy(k)jj2 for the CMA algo-
rithm is used with a cost function equal to one fourth of the
expected value of the squared magnitude of the error. The
�lter coe�cients are updated using

wk+1 = wk + �e(k)y�(k)xk (3)

4. CMA VS LMS FOR A RANDOMLY

MODULATED FM SIGNAL

Frequency-modulated signals were used as the �lter inputs
for comparison of the convergence performance of LMS- and
CMA-directed �lters under computer simulation. The in-
put to the modulator was constructed to have a bandlimited
noise-like nature by combining a large number of equal-
amplitude sinusoids with randomized initial phases. This
nearly Gaussian, bandlimited signal was scaled by a se-
lected modulation index and then applied to a frequency
modulator. An example of such a signal is shown in Figure
1. A segment of the real part of the signal for a duration
equal to a �lter length is shown in Figure 1a. The corre-
sponding spectrum is shown in Figure 1b. For both the
LMS and CMA cases the modulated signal was applied to
an N -tap FIR adaptive �lter. For all cases reported here
N = 128, and a normalized sampling interval of 1 was used.
The normailzed carrier frequency was .0625.
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Figure 1. A Typical Modulating Signal Segment
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Figure 2. Typical Convergence Behavior for an

LMS-directed Filter with a Noise-loaded FM Input

For the LMS case, the desired signal d(k) was obtained
by delaying the modulator output by 8 samples. For CMA,
of course, no reference signal was needed. The �lter initial
condition was chosen in all cases to be a unit pulse at the
eighth �lter tap (thus corresponding the delay chosen for
the LMS �lter) but the amplitude of the pulse was chosen
in various ways during the experiments. The rationale for
choosing an initial condition close to the desired objective
for both LMS and CMA was a desire to focus on the per-
formance near �nal convergence. Figures 2 and 3 show a
typical set of comparative results. In both cases the �lter
was initialized with a pulse amplitude of 0.9 and the input
signals were as shown in Figure 1.
Figure 2 shows the response of the LMS directed �l-

ter. The \learning curve" is shown in Figure 2a, and the
magnitude of the �lter transfer function after over 16000
iterations is shown in Figure 2b. In addition, values of the
magnitude of the transfer function are plotted against each
other over time. In Figure 2c the magnitude of the transfer
function at fc +

1

N
is plotted against the magnitude at fc.

The same type of plot in Figure 2d shows the magnitude
at fc +

2

N
plotted against the magnitude at fc.

Figure 3 shows the same type of data for an CMA-
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Figure 3. Typical Convergence Behavior for a

CMA-directed Filter with a Noise-loaded FM In-

put

directed �lter with an FM input constructed in the same
way. The �lter transfer functions are similar. However, it
is clear from a comparison of the two lower plots of each
�gure that the trajectories for the di�erent frequency com-
ponents of the two �lters is not the same. The value at
fc for the CMA �lter overshoots and then conveges back
toward the ideal value while in the LMS �lter the value
approaches the ideal value from below.

5. SOME SPECIAL CASES FOR PERIODIC

INPUTS

When �rst analyzing the convergence of CMA, it is tempt-
ing to use a simple sinusoidally modulated FM signal. This
type of signal is particularly attractive if the frequency of
the modulating sinusoid is chosen to be an integer multi-
ple of fs

N
, where fs is the sampling frequency and N is the

length of the adaptive �lter. When chosen this way the
Bessel structure of the FM signal's spectrum has the prop-
erty that all of the signal's energy is also concentrated at
integer multiples of fs

N
and the �lter gains at all of those

frequencies are easily ascertained with an N-point DFT of
the adaptive �lter's tap weights. In this case is also tempt-
ing to try to apply the results obtained in [4] to predict the
convergence rates of the various tonal components of the
FM signal.
Figure 4 shows the results obtained from CMA using a

sinysoidal modulating functionwith � = 1:6. The magni-
tudes of the lines in the spectrum of the modulated signal
starting from fc are given by the Bessel function values for
this � as .4554, .5699, .2570, and .0725. Using the power
ratios of these lines, the initial slopes in Figures 4c and 4d
are very close to the respective predicted values of 1.57 and
.32. As in the case shown in Figure 3, the component at fc
overshoots its ideal value. The behavior shown in Figure 4
is consistent over a wide range of values for the adaptation
constant � and over a wide range of initial �lter values less
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Figure 4. Convergence of CMA for SinusoidalMod-

ulating Signal with Frequency 1/N.

than 1. For this case of a sinusoidal modulating function,
the LMS output starts with the same trajectories as the
CMA �lter. However the overshoot at fc does not occur,
and the resulting �lter is atter and wider. After 8000 iter-
ations, the CMA �lter produced a squared error lower than
the LMS �lter by a factor of 10. When the CMA �lter is
initialized to a value greater than 1, the component at fc is
attenuated instead of ampli�ed.

When the modulating signal was the sum of two sinusoids
at frequencies of 1

N
and 1

3N
, the behavior of the LMS and

CMA �lters was similar and predictable. However, when
the two frequecies were 1

N
and 3

N
so that the modulating

waveform had a period equal to the �lter length, the unex-
pected results shown in Figure 5 were obtained.

The source of both of these problems is the same. When
the input to the modulator is chosen to have a period ex-
actly equal to a submultiple of the �lter length, then both
it and the FM signal are periodic in the �lter length, and
the resulting data matrix is circulant. It is easily shown
that the weight vector w can be selected to produce any
of a variety of almost constant-envelope signals. The one
chosen by the adaptive �lter will depend strongly on the �l-
ter's initial condition. Thus di�erent initial conditions will
produce di�erent convergent �lters even for the same input
signal.

Now why does the CMA �lter not capture as we ex-
pected? In [4] it was assumed that the input sinusoids are
statistically independent in that they have random start-
ing phases. In the case of the FM signal the phases of the
various Bessel-weighted sinusoids are deterministically re-
lated. It should also be noted that the experimental results
cited in [8] showed that QAM inputs with period equal to
the equalizer length also caused unusual and undesirable
convergence behavior.
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Figure 5. Misconvergence of CMA for Modulating

Signal Composed of two Sinusoidal Signals at Fre-

quencies of 1/N and 3/N.

6. SUMMARY

The results presented here show that the convergence rates
of CMA and LMS algorithms are comparable for nonzero
bandwidth constant modulus signals which are not periodic
with a period equal to a submultiple of the �lter length.
Attention should now be focused on pulsed signals with
discrete inputs of the type used to transmit digital data,
e.g. PSK and QAM. This may be done in two steps.

� Analyze the CMA-directed asymptotic convergence
rate of a QPSK signal in the important special case
of a T

2
-spaced equalizer, comparing it again to that

of a training-directed LMS equalizer. Since QPSK
is a constant envelope signal when sampled at \top
dead center", the asymptotic dynamics of a CMA-
directed equalizer can be expected to be controlled by
the eignevalues of the input correlation matrix. This
implies that the CMA-directed equalizer will converge
at the same rate as an LMS-directed equalizer and its
misadjustment can be expected to be about the same
(for the same �lter length and adaptation constant �).

� Extend the analysis for QPSK to the last step, the case
of non-constant envelope, non-zero bandwidth signals.

Recent as-yet-unpublished work by Fijalkow, et al [9]
shows that the misadjustment for a CMA-directed �lter
is the same as that of an LMS-directed �lter plus a term
strongly proportional to the degree that the input signal
is non-constant envelope. (Thus a PSK signal would ex-
pect to see the same misadjustment with either an LMS
or CMA-directed �lter since it has a constant envelope.)
Since misadjustment noise contributes to the overall noise
at the output of the adaptive �lter, this suggests that the
adaptation constant � for the CMA-directed �lter might
be typically set much lower than that of an LMS-directed
�lter in order to attain the same output SNR or MSE. Set-
ting the adaptation constant substantially smaller would,

of course, slow down convergence by the same factor. Is
this misadjustment-driven reduction in � in fact the reason
that CMA is considered to be slower? The careful analytical
work needed to address the QPSK and QAM convergence
rate questions listed above will answer this question as well.
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