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ABSTRACT

Usually, the �rst processing step in computer vision sys-

tems consists of a spatial convolution with only a few simple

�lters. Therefore, information is lost or it is not represented

explicitly for the following processing steps. This paper pro-

poses a new hierarchical �lter scheme that can e�ciently

synthesize the responses for a large number of speci�c �l-

ters. The scheme is based on steerable �lters. It also allows

for an e�cient on-line adjustment of the trade o� between

the speed and the accuracy of the �lters. We apply this

method to the detection of facial keypoints, especially the

eye corners. These anatomically de�ned keypoints exhibit

a large variability in their corresponding image structures

so that a exible low level feature extraction is required.

1. INTRODUCTION

Face recognition is of importance for many tasks like man-

machine-communication, surveillance, and others. Many

methods in face recognition need the detection of facial key-

points like the eye-corners [5]. The problem in detecting

these keypoints is the complicated structure and the ex-

tremely large variability of the corresponding image struc-

tures. Therefore, purely data-driven corner detectors like

the one of Kitchen & Rosenfeld [6] are not able to detect

these keypoints. Yuille et al. proposed a deformable tem-

plate approach to incorporate a 'global percept' of the scene

[9]. However, due to the small number of parameters in

their models the exact localization of the keypoints is not

guaranteed. To cope with this situation in this paper a

powerful low level feature extraction scheme is suggested.

Usually, the �rst processing step in computer vision sys-

tems consists of a spatial convolution with only a few simple

�lters. This restriction, however, has the drawback that in-

formation is lost or that it is not represented in an explicit

way. Hence, the following processing steps are not opti-

mally supported. To obtain more complete descriptions,

more exible �ltering schemes are required.

Recently a new �ltering technique called steerable �lters

(other names have been used also) has been proposed to

obtain the response of a certain mother kernel in a contin-

uum of orientations, scales or other parameters [1, 8]. The

idea of this technique is to apply a small number of basic

kernels, so called basis functions, which have been chosen
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appropriately so that all kernels of interest can be gener-

ated from them by superpositions. In previous work [1, 8]

only 'primitive' edge or line detection kernels have been

steered by this method. In contrast to this, we are inter-

ested in better exploiting the large exibility o�ered by the

steerability scheme to synthesize a variety of more complex

kernels, e.g. a kernel with circular symmetry. For this we

propose a new hierarchical �ltering scheme. Moreover, we

propose to vary on-line the number of basis functions to

optimize the trade o� between the speed and the accuracy

of the �lters.

2. STEERABLE FILTERS

The term 'steerable �lters' refers to the reconstruction of

deformed �lter kernels F� (respectively their responses, �

is a general multi-deformation) by a superposition formula

of the following type:

F�(~x) =

NX

k=1

bk(�)Ak(~x) (1)

The number N of so called basis functions Ak; k =

1 : : : N is assumed to be small compared to the number

of deformed kernels. Typically N will be 10 or 20, while

� theoretically assumes an in�nite number of values and

many thousands in practice (for orientation and scale). Our

method to obtain the optimal basis functions is based on

Perona's approach [8]. One main di�erence is that we ex-

plicitly address the �nite dimensional case which is the rele-

vant for practical problems. Furthermore, we steer all defor-

mations (e.g. orientation and scale) in one step. Only the

basic idea of the method will be given. More theoretical

background can be found in [7].

Let Fk(x; y) denote the deformed kernels, where 'k' sam-

ples all deformations together (orientation and scale). h�j�i
denotes the usual scalar product.

The matrix G with elements Gkl = hFkjFli is called the

Gramian. It is real and symmetric and therefore, it has a

complete set of eigenvectors. The eigen decomposition of G

is denoted as:

hFkjFli =
X

m

um;kmum;l (2)

um denotes the m'th eigenvector with eigenvalue m.

um;k is k'th element of m'th eigenvector.

The optimal (and orthogonal) basis functions Am(x; y)

are given by



Am =
X

l

um;lFl (3)

'Optimality' here means that a minimal number of basis

functions is necessary for a given L2 error. The interpo-

lation functions for arbitrary orientations (�), scales (�)

etc. are given by

bm(�; �) =
hF�;�jAmi

k Am k2
(4)

The sampling of � and � in this formula is independent

of the sampling for the Gramian. The reconstruction of the

deformed kernels is by F�;� =
P

m
bm(�; �)Am. It should

be emphasized that the calculation of the bm and Am by (2),

(3), and (4) is done o�-line and thus it is not time critical.

Examples of basis functions to steer a Gaussian �rst deriva-

tive kernel (an edge detection �lter) in orientation and scale

are depicted in �g. 2 (top box).

2.1. Properties of the basis functions

The quality of the reconstructed kernels depends on the

number of basis functions. In previous work a �xed number

of basis functions has been used for the reconstruction of

the kernels. We point to the bene�ts of orthogonal basis

functions for the on-line adaptation of the quality and speed

of the �lters by changing the number of basis functions.

Figure 1 shows examples of reconstructions with di�erent

numbers of basis functions. The following two properties of

the basis functions are essential:

� The basis functions are orthogonal. Thus it is easy

to add on-line new basis functions to achieve a better

reconstruction quality.

� Any number of basis functions reconstruct all deformed

kernels. Only the quality of the reconstruction changes.

Figure 1. An elongated �rst Gaussian derivative

kernel reconstructed with di�erent numbers of ba-

sis functions. Depicted are reconstructions of the

kernel with 10 (left) and 30 (right) basis functions.

The respective L2 errors are 22% and 3%.

In most cases low quality approximations of the kernels

are su�cient. Therefore, the region that is to be analyzed is

convolved with only a small number of basis functions. The

reconstructions then have a relatively large error. Neverthe-

less, they qualitatively resemble the original kernel. More

basis functions are added only during the processing at cer-

tain positions where better approximations are required.

3. HIERARCHICAL FILTERING SCHEME

In the �rst step of the hierarchical �ltering scheme the im-

age is convolved with a small number of basis functions

(�g. 2, top box). These are the only convolutions that are

really carried out. All following �lter responses are gener-

ated by superpositions of these responses. In the next step

an elongated �rst derivative of Gaussian kernel is steered in

orientation and scale (other kernels and deformations are

possible)(�g. 2 middle box). We will call these kernels the

'primitive' kernels. The aspect ratio is 2 to enhance the

orientation selectivity of the kernel.

basis functions

+

primitive kernels

+

complex kernels and active operations

Figure 2. The hierarchical �lter scheme. First step

(top box): examples of basis functions. Second step

(middle box): primitive kernels with di�erent ori-

entations and scales. Third step (bottom box): cir-

cular kernel with 4 primitive kernels and 10 basis

functions for each (top left). Circular kernel with

28 primitive kernels and 30 basis functions for each

(bottom left). The gap in the circular kernel is

motivated by its use as an iris-detector. An one-

sided kernel that is rotated around a shifted center

(top right). An active edge tracking operation that

searches the next edge element (bottom right).

For the third step we exploit the possibility to reconstruct



primitive kernels at arbitrary positions, scales and orienta-

tions. We can then synthesize more complex kernels from

superpositions of the primitive kernels. Examples of such

complex kernels are an one-sided and a circular kernel (�g. 2

third box). In addition to the complex kernels some basic

'active operations' can be derived from the steered primitive

kernels. An example is an one-step edge-tracking operation

(�g. 2 third box). For this the �lter scans the vicinity of a

given edge element in orientation and space to detect the

next edge element.

The reuse of the same set of basis functions for many dif-

ferent kernels makes the scheme very exible and e�cient.

The use of steerable �lters as the basis for the complex �l-

ters and the edge tracking operation o�ers a tremendous

exibility for the feature extraction in low level vision sys-

tems.

4. DETECTION OF FACIAL KEYPOINTS

For the detection of facial keypoints we propose a model

driven approach. A model, e.g. of the eye, is used to con-

trol the feature extraction and to guide a sequential search

for the keypoints. These parts of the whole facial keypoint

detection scheme have been already presented in other pub-

lications [2, 3]. In this paper we focus on the hierarchical

�lter scheme that is used to support a exible and complete

low level feature extraction. Appropriate complex �lters

are synthesized on-line based on primitive �lters to derive

the features of interest. Especially we present an improved

iris detection approach and a �nal veri�cation step for the

eye corner candidates that are detected by the approach in

[2, 3].

A basic idea of the suggested �lter scheme is that simple

but fast �lters are applied �rst. If the responses of the fast

�lters are ambiguous or if more speci�c features are required

more time consuming �lters are applied. However, this will

be the case only for certain positions or �lter parameters

(orientation etc.). The complex �lters can be applied in

simpler and faster versions �rst, by using less primitive �l-

ters for their synthesis. In addition, the number of basis

functions for the reconstruction of the primitive �lters can

be varied (section 2.1.). This idea is demonstrated by the

following examples.

The �rst example is the detection of the circular symme-

try of the iris (�g. 3) which is the most reliable feature of

the eye. Therefore, the search starts by detecting the iris

with a fast circular �lter (�g. 3, left). For this the image is

convolved with 10 basis functions for steering an elongated

Gaussian �rst derivative �lter. If steering the scale of the

primitive �lters is not required, as in this special example,

even less basis functions were necessary.

The fast circular �lter has a spacing of 90� between

the constituent primitive kernels. The response of a high-

quality circular �lter with 30 basis functions and 10� spac-

ing (�g. 3, right) is calculated only at those positions, where

the low-quality response is above a certain threshold (for

demonstration purposes it is calculated here for all posi-

tions). Usually only a few percent of the eye region pixels

have to be processed by the accurate but time consuming

�lter. The projections to the additional basis functions and

primitive kernels are calculated only for these pixels. Hence,

Figure 3. Top: Example eye region. Middle: A fast

(left) and an accurate (right) version of a circular

iris detector kernel. Bottom: Responses of the cir-

cular �lters to the eye region as wire frame plots.

The largest peak indicates the center of the iris.

we obtain the performance of the high-quality �lter with the

costs of the simple �lter which is about 20 times faster.

The responses of �g. 3 are for a circular �lter with an

appropriate radius. If the radius of the iris is unknown,

di�erent radii of the iris have to be tested. Here again, the

fast version of the circular �lter allows a signi�cant speed

up without losing performance.

After the iris is detected the upper eye lid is tracked by

the edge tracking operation of �g. 2 (see [2, 3] for more

details). The position where the eye-lid changes its orienta-

tion is a candidate for the eye-corner. However, because of

the complicated and variable image structures false detec-

tions of the eye corners may occur. Therefore, by applying

an one-sided �lter (�g. 2, bottom box) the candidate points

are tested for the presence of a V-junction that is likely to

be an eye corner (�g. 4).

The synthesis of the complex kernels is not perfect be-

cause the responses of the basis functions are available only

on a discrete grid. For rotations and other deformations of

the complex �lters the primitive responses are also needed

between pixels. The strategy is again to �rst apply a fast,

non-interpolated one-sided �lter. The interpolated �lter is

calculated only at those positions and orientations where

more details are of interest, e.g. where the response is above

a certain threshold.

The interpolated �lter is derived by a spatial linear in-

terpolation of the responses of the primitive �lters at pixel

positions. For a four nearest neighbor linear interpolation

the �lter is almost perfect but it is about 5 times slower

than the non-interpolated one. However, the interpolated

response has to be calculated only for those positions where

the non-interpolated response is ambiguous. Figure 4 shows
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Figure 4. Orientational energy signature for the
one-sided �lter at the right eye corner (arrow) (a).
Depicted are the responses of the non-interpolated
�lter (b), the 4-nearest-neighbor interpolated �lter
(c), and the smoothed response of the interpolated
�lter (d).

an example. The 'jaggedness' of the non-interpolated re-

sponse (�g. 4b) is caused by the discretization of the po-

sition. With a subsequent smoothing, however, even the

non-interpolated response gives good results. The interpo-

lated and smoothed response has no visible di�erence to the

response of the true one-sided �lter.

Figure 5 shows examples of successfully analyzed eye re-

gions. The large variability in the depicted eye regions

demonstrates the robustness of the approach. Although

there are many irritating structures from wrinkles, eye-

brows, shadows etc. the anatomically correct keypoints are

detected successfully.

Figure 5. Examples of successfully analyzed eye re-
gions.

5. CONCLUSIONS

In this paper we focused on a new hierarchical �lter scheme

that has been applied to improve a model based facial key-

point detection approach [2, 3]. The scheme o�ers a large

exibility for the feature extraction in low level vision sys-

tems. Model knowledge together with the information that

is derived during the processing controls the choice of the

�lters. The trade o� between the quality and the speed of

the �lters can be optimized on-line by changing the num-

ber of basis functions and, in case of the complex �lters, by

changing the number of constituent primitive �lters.

The hierarchical �lter scheme is not tied to steerable �l-

ters of course. However, the use of steerable �lters for the

�rst step has the advantage that all orientations (and other

deformations) of the primitive kernels are available, making

the synthesis of the complex kernels more exible and more

exact. If only one type of complex kernel would be of inter-

est and convolved with the whole image there is no or little

advantage in the hierarchical �ltering scheme. However, it

is powerful if many di�erent complex kernels are involved

because all of them are synthesized from the same relatively

small set of basis functions.

One application of the �lter scheme that we demonstrated

is the veri�cation of the detected keypoint candidates. In

earlier work this task has been performed by a neural net-

work classi�cation approach [4]. In contrast to the neural

network approach the hierarchical �lter approach has the

bene�t that explicit knowledge and models can be applied

and tested. The �lter scheme allows to extract with rea-

sonable costs the low level features that are necessary to

compare the image structures to the model.
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