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ABSTRACT

Given a sequence of blurred low resolution images, the
aim of this work is to produce a sequence of higher
resolution and restored images. It is assumed that the
point spread function of the given imaging process is a
combination of a known blurring function and an
estimated local motion function. The local motion
estimation is obtained by the respective group delays of
local adaptive filters. Preliminary experimental results
are presented.

1. INTRODUCTION.

Image restoration operations are intended to filter out
degradation effects generated by the imaging process.
The aim of image restoration is to compute a restored
image that is as close as possible to the original scene. An
extensive review of image restoration can be found in [1].
Resolution enhancement operations are intended to
increase the resolution of an image by estimating the
values of the image at samples between the given pixels
[2]. This paper proposes an operation by which
restoration and resolution enhancement of image
sequences are simultaneously obtained.

Restoration of multi-frame data was first
introduced in [3]. Restoration algorithms for multi-
channel images [4] and its extension to image sequences
[5] have been recently proposed. In both cases the
correlation between channels or between frames
contribute to the restoration results. Resolution
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enhancement based on image registration is proposed in
[6]. It is assumed that there is no motion in the image
sequence. The resolution enhancement approach
proposed in [2] deals with independent object motion,
and uses a Bayesian interpolation method.

The work presented here is intended for
restoration and resolution enhancement of video
sequences. The proposed algorithm yields a sequence of
super-resolution images. Local small displacements
between consecutive frames of the input sequence are
compensated using adaptive local filters. Each super-
resolution frame is generated from the previous super-
resolution frame and the back projected filtered sub-
sequence of input frames. The basic assumption is that
the input images are decimated versions of a super-
resolution blurred and noisy image sequence. The aim is
to estimate the original super-resolution image sequence.
The following is a description of the proposed algorithm
using a notation similar to that of [6].

2. THE PROPOSED APPROACH.

Let the input monochrome video sequence be {gk}.
The imaging process is modeled by:
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Where, gk is the k-th input image, fk is the k-th super-
resolution image, h is the blurring operator, ηk is the
additive noise, and σk is a decimation function with a
decimation factor L.

Denote by (m,n)k the pixel (m,n) of the input image
gk. The gray level of this pixel, gk(m,n), is a weighted
sum of the pixels belonging to the respective receptive
field of fk, as shown in Figure 1. The weights are the
respective elements of the blurring function h. The
receptive field is uniquely defined by its center (p,q) and



by the region of support of h. A pixel (m,n)k is said to be
influenced by a pixel (x,y) belonging to fk if (x,y) is
within the receptive field of (m,n)k.

The receptive field                                  Pixel (p,q), the
                  R(m,n)                                  of the receptive
                                                                field.

                                        Pixel (m,n)

Figure 1. Receptive field illustration.
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� � is a forward projection function explained

later,5P Q� is the receptive field of (m,n), and (p,q) is the

center of 5P Q� . The image �IN is an estimate of fk. If the

estimate is perfect, then �JN is equal to gk. If this is not the

case, The difference between �JN and gk is used for the

computation of �I N+� as follows:
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where, µ is a normalizing factor, rx,y is the set of all
pixels in �JN that are influenced by pixel (x,y), and

hk m n
BP

, , is a back projection function explained later.

Each one of the forward projection functions

hk m n
FP

, , is composed of two components. The first

component is the blurring function hPSF representing a
known weighted sum averaging function of the sensing

system. The second component, hk m n
PRD

, , , is a local

function that minimizes the mean square difference

between gk+1(m,n) and K J P QN P Q
35'
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represents convolution.

We use the Wiener approach [7, page 20] to
minimal square error prediction for the estimation of

hk m n
PRD

, , .

Let the prediction error ek(m,n) be defined as:
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N��J� � �P�Q  in vector presentation is given

by:
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Where Wk,m,n is a column vector containing the
lexicographic order of the two dimensional pxp local

filter (m,n), and N�P�Q
7; ∈5

S�

is the transposed of a vector

containing the lexicographic order of the pxp sub image
of gk centered at (m,n).

Let the local autocorrelation matrix at (m,n) be
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7⋅

The expectation E{.} is estimated within a small
neighborhood containing gk(m,n). The correlation
between the desired pixel value gk+1(m,n) and the
respective input sub-image N�P�Q

7; is given by

N P Q3 P�Q� � � � `�  �(^J ;N N�P�Q
7⋅

The optimal prediction filter for the minimum mean
square error E{ek

2(m,n)} is given by
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The optimal two dimensional local prediction functions
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 An adaptive implementation can be used in order to

compute the local prediction functions KN P Q
35'
� �  by the LMS

algorithm [7] as follows:
The functions for k=0 are initialized in some

manner. Then, for k=1,2,3,... the error ek(m,n) is
computed by:
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The error ek(m,n) is computed for each pixel (m,n)k,

using the prediction function KN P Q
35'
� � that is particular to

that pixel.  Each  prediction  function  is  adapted
according to
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where γ is a convergence factor, and � � � �* P QN is a sub-

image of � � � �J P QN  respective to the region of support of
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� � . The adaptation is performed within a small

neighborhood containing gk(m,n). The group delay of

each KN P Q
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� � indicates the local motion vector.

The forward projection function KN P Q
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convolution between hPSF and the interpolated (with

factor L) version of KN P Q

35'

� � . The interpolation is required

because the domain of the function KN P Q
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image sequence, and the domain of KN P Q
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� � is the super-

resolution image sequence.

The function KN P Q
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contributions of the respective pixels (m,n)k to the

estimation of � � � �I [ \N+� . We follow [6] and set KN P Q
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3. SIMULATION RESULTS.

We report here preliminary results as available at this
time. The adaptive implementation has been applied to a
sequence of shifted images. Figure 2 shows one of the
images.

Figure 2. One of the images of the sequence.

One hundred and twenty images were used. The sequence
was divided into three types of sub sequences, consisting
of fifteen images each. The images of sub-sequence Type
A where shifted one pixel diagonally towards the lower
right corner. Type B consists of images with no shift, and
the images of Type C were shifted diagonally one pixel
towards the upper left corner.

We present here the results of the adaptation of one
local 3x3 filter, adapted within a 10x10 window. In the
ideal case, the shift in Type A sub-sequence should give
rise to filter coefficients
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Similarly, the shift of Type C should yield
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and for the shift of Type B,
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The results of the adaptation process are
summarized in Figure 3. The first three graphs present
the values of the coefficients h(0,0) (the upper left),
h(1,1), and h(2,2) of the filter matrix. The bottom graph
depicts the mean square error between the prediction and
the actual value.
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Figure 3. Convergence of Adaptive Filter Simulation.

We are currently applying the proposed restoration
and super-resolution algorithm to image sequences taken
under turbulence conditions. The input image sequences
contain small local arbitrary motion of small
neighborhoods between frames.
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