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ABSTRACT

We consider the problem of synthesizing feasible signals

in the presence of inconsistent convex constraints, some of

which are hard in the sense that they must absolutely be

satis�ed. This problem is formalized as that of minimizing

an objective function measuring the degree of unfeasibility

with respect to the soft constraints over the intersection

of the sets associated with the hard constraints. We �rst

investigate the process of aggregating soft constraints in

order to de�ne relevant objectives and then address the

question of solving the resulting convex programs. Finally,

we provide numerical results to illustrate the bene�ts of

our analysis.

INTRODUCTION

The goal of a set theoretic signal synthesis (estimation or

design) problem is to produce a signal a? consistent with

a family (	i)i2I of constraints. Each constraint 	i is as-

sociated with a set Si=fa2� j a satis�es	ig in a suitable

signal space �. The feasibility problem is then stated as

Find a
?
2 S ,

\
i2I

Si: (1)

Throughout this paper, � is a real Hilbert space with dis-

tance d, I = f1; : : : ;mg is �nite, and the Si's are closed

and convex. This convex set theoretic feasibility frame-

work has been applied to a wide range of signal processing

problems, e.g., [2]-[5], [9].

In certain problems (1) may not have solutions because

incompatible constraints are present and, therefore, S = �

[2], [5]. In such instances, it was shown in [6] that the

solutions produced by the popular POCS algorithm

(8n 2 N) an+1 = Pn (modulom)+1(an); (2)

where Pi is the projector onto Si, are guaranteed to lie

at best in one of the sets. They are therefore not reliable

for it is not known whether they satisfy { in any approxi-

mate sense { the remaining m� 1 constraints. A notable
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exception is when m = 2, as the solutions can then be

interpreted as points that satisfy one constraint and are

closest to the set representing the other one. A more sat-

isfactory approach was proposed in [2], where the parallel

projections scheme

(8n 2 N) an+1 = an + �n(
X
i2I

wiPi(an)� an);

(3)

with (�n)n�0 � ["; 2 � "] (0 < " < 1), (wi)i2I � R
�
+ , andP

i2I
wi = 1, was shown to converge weakly to a mini-

mizer of the proximity function � : a 7!
P

i2I
wid(a; Si)

2,

i.e., to a weighted least-squares solution of the inconsistent

feasibility problem (1).

In this paper, we consider inconsistent signal feasibility

problems in which some constraints { called \hard" here-

after { must absolutely be enforced, e.g., because they arise

from certain a priori information in estimation problems

or because they correspond to imperative speci�cations in

design problems. Accordingly, the family (	i)i2I is broken

up into a group of hard constraints (	i)i2IN and a disjoint

group of soft constraints (	i)i2IM . Now, let S
N =
T
i2IN

Si
and let �M be some objective function aggregating the soft

constraints (	i)i2IM . Then the hard-constrained version of

the inconsistent signal synthesis problem (1) reads

Find a? 2 G , fa2S
N
j (8b2SN) �M(a) � �M(b)g:

(4)

In the following sections, we �rst discuss the construction

of �M and then the problem of solving (4). Finally, we

show some numerical results.

SOFT CONSTRAINTS MODELING

AND AGGREGATION

Throughout, we shall make the following assumptions.

1. (8i 2 I) Si = fa 2 � j gi(a) � 0g, where the functions

(gi)i2I are convex and continuous.

2. SN is (closed, convex) nonempty and bounded.

3. �M is convex and continuous.

It follows that G in (4) is nonempty, bounded, closed, and

convex, and that �M and (gi)i2I are subdi�erentiable [1].



Besides the above mathematical requirements, the selec-

tion of a pertinent objective �M to aggregate the soft func-

tions (gi)i2IM should also be guided by some common-

sense conditions. Let IN = f1; : : : ; kg and IM = fk +

1; : : : ;mg. Then, for some function ' : Rm�k ! R,

�M , '(gk+1; : : : ; gm) and we shall require that the con-

ditions below be met.

1. ' is invariant under permutations of itsm�k variables.

2. (8a 2 �) �M(a) � 0 and �M(a) = 0 , a 2 SM ,T
i2IM

Si. Consequently, ' is nonnegative and vanishes

only on the nonpositive orthant (R�)
m�k.

3. Monotonicity: when m� k� 1 of its variables are held

�xed, ' is an increasing [resp. constant] function of the

remaining variable on R+ [resp. on R� ].

4. The subgradients of �M are easy to compute.

Now let (8(i; a) 2 IM � �) g+i (a) , maxf0; gi(a)g and let

(fi)i2IM be increasing convex functions from R+ into R+
that vanish at 0. Then two generic aggregating functions

are �
�M1 : a 7!

P
i2IM

fi � g
+

i (a)

�M2 : a 7! maxi2IM fi � g
+

i (a):
(5)

Let us note in passing that the proximity function �M :

a 7!
P

i2I
wid(a; Si)

2 ((wi)i2I � R
�
+) { used in [2] when

IN = � { appears as a special case of �M1 .

NUMERICAL ALGORITHMS

We now address the problem of solving the hard-

constrained signal feasibility problem (4). Let us note that

the algorithms mentioned in the Introduction solve (4) only

in two cases. POCS (2) applies when m = 2, IN = f1g,

IM = f2g, and �M(a) = d(a; S2). On the other hand,

(3) applies when IN = � and �M(a) =
P

i2I
wid(a; Si)

2.

While there is no best approach to solve (4), several meth-

ods are available which are suitable in speci�c contexts.

We present here a few examples. Hereafter, PN denotes

the projector onto SN, �? = infa2SN �M(a), and it is as-

sumed that argmina2� �M(a) =2 SN.

Algorithm 1 [8] Suppose that �M is di�erentiable on SN,

that r�M has Lipschitz constant M on SN, and that 0 <

" < 1. Given a0 2 SN, de�ne

(8n 2 N) an+1 = P
N(an � �nr�

M(an)); (6)

where (�n)n�0 � ["; 2=(M + 2")]. Then (�M(an))n�0 con-

verges to �?; if Q is strictly [resp. uniformly] convex, then

(4) admits a unique solution a? and (an)n�0 converges

weakly [resp. strongly] to a?. �

The above algorithm is applicable when PN is easily com-

putable, i.e., when SN is geometrically simple. It moreover

requires that �M be di�erentiable on SN. In the next al-

gorithm these restrictions are lifted but it is assumed that

a reasonably tight upper bound � is available for �?. The

corresponding approximation to problem (4) is then

Find a
?
2 eG , fa 2 � j �

M
(a) � �g \ S

N
; (7)

which is a consistent 2-set feasibility problem. Now

construct a function �N aggregating the hard functions

(gi)i2IN according to the same conditions as for �M above.

Then

eG = fa 2 � j �M(a) � �g \ fa 2 � j �N(a) � 0g

(8)

and (7) can be solved via an extrapolated subgradient pro-

jections method.

Algorithm 2 [4] With the convention 0=0 = 1 in force, let

PNn (an) = an ��N(an)t
N

n=kt
N

nk
2, where tNn is a subgradient

of �N at an (an analogous de�nition applies to PMn (an)).

Given a0 2 �, de�ne for every n 2 N

an+1 = an + �n(P
N

n (an) + P
M

n (an)� 2an); (9)

where

�n =
kPNn (an)� ank

2 + kPMn (an)� ank
2

kPNn (an) + PMn (an)� 2ank2
: (10)

Suppose that the subgradients of �N and �M are uniformly

bounded on bounded sets. Then (an)n�0 converges weakly

to a point a? 2 eG. �

It should be noted that Algorithm 2 solves (4) exactly when

� = �? and gives an approximate solution otherwise. In

some cases, it is possible to re�ne � over the iterations.

Results in that direction can be found in [7].

The third algorithm is a cutting-plane method.

Algorithm 3 Let Q0 be a bounded polyhedron (�nite in-

tersection of closed half-spaces) containing SN. Suppose

that �M is uniformly convex on Q0 and that the subgradi-

ents of the k hard functions (gi)i2IN are uniformly bounded

on Q0 (e.g., � has �nite dimension and �M is strictly con-

vex on Q0), and let a0 = argmina2Q0 �M(a). A sequence

(an)n�0 is constructed as follows. At iteration n 2 N,

i(n) = n (modulo k) + 1, ti(n) is a subgradient of gi(n)
at an, Hn = fa 2 � j han � a j ti(n)i � gi(n)(an)g,

and Qn+1 = Qn \ Hn. Now de�ne the new iterate as

an+1 = argmina2Q
n+1

�M(a). Then (an)n�0 converges

strongly to the unique solution a? of (4). �

In Algorithm 3, only the ability to compute the subgradi-

ents of the hard functions and to solve linear programs is

required. However, as n increases, the complexity of the

polyhedron Qn grows and so does that of the linear sub-

programs. Variants of Algorithm 3 can be devised that

mitigate or eliminate altogether this problem. We shall

present these results elsewhere.



SIMULATION RESULTS

We present here a simple application of the proposed

framework in which we revisit the digital pulse shape de-

sign problem of [2]. In this problem four incompatible con-

straints are present:

	1: The Fourier transform of the pulse is zero at multiples

of 50Hz and beyond 300Hz.

	2: The pulse has linear phase and its midpoint has am-

plitude 1.

	3: The energy of the pulse does not exceed � = 4.

	4: The actual duration of the pulse is 50 ms and it has

periodic zero crossings every 3.91 ms.

The associated property sets (Si)1�i�4 and their projec-

tors can be found in [2]. In the �rst experiment, no

hard constraint is imposed and a least-squares cost is

chosen to aggregate the soft constraints, namely, �M :

a 7! (1=4)
P

4

i=1
d(a; Si)

2. The results are shown in

Figs. 1-2. 	1 is then chosen as a hard constraint

and the soft constraints are aggregated with �M : a 7!

(1=3)
P

4

i=2
d(a; Si)

2. The results are shown in Figs.

3-4. Next, 	4 is chosen as a hard constraint and

the soft constraints are aggregated with �M : a 7!

(1=3)
P

3

i=1
d(a; Si)

2. The results are shown in Figs. 5-6.

Since �M has a lipschitzian gradient and all the projectors

are easily computable, Algorithm 1 was used in the two

hard-constrained problems.

At this point it is worth noting that a pulse satisfy-

ing 	4 can also be obtained by implementing POCS as

(8n 2 N) an+1 = P4 � P1 � P2 � P3(an). However, as noted

in [2], there is no guarantee that the solution thus obtained

is close to the other sets in any sense. One can check in

Figs. 7-8 that the pulse generated by POCS does indeed

satisfy 	4 but is worse than that produced in Figs. 5-6 in

terms of satisfying the remaining constraints (	i)1�i�3.
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Fig. 1: Pulse generated without hard constraints.
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Fig. 2: Normalized spectral density of Fig. 1.
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Fig. 3: Pulse generated with 	1 as a hard constraint.
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Fig. 5: Pulse generated with 	4 as a hard constraint.
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Fig. 7: Pulse generated by POCS.
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Fig. 4: Normalized spectral density of Fig. 3.
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Fig. 6: Normalized spectral density of Fig. 5.
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Fig. 8: Normalized spectral density of Fig. 7.


