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ABSTRACT

This paper presents a technique for deblurring noisy images. It
includes two processing blocks, one for denoising and another
for blind image restoration. The denoising step is based on the
theories of singular value decomposition and compression-based
filtering. The deblurring step is based on a double-regularization
technique. Experimental results show that the combination of these
techniquesisquite effectivein restoring severely blurred and noise-
corrupted images, without prior knowledge of either the noise or
image characteristics.

1. INTRODUCTION

Image deblurring is a difficult problem even when there is exact
knowledge of the blur degradation. Inthis paper, we consider alin-
ear space-invariant model for the blur, where the blur point spread
function (PSF) and the noise strength are assumed to be unknown.
The most effective deblurring technique known to the authors for
thisframework isthe one recently proposed by You and Kaveh[1].
This is an iterative technique which simultaneously estimates the
blur PSF and restores the image. In [1], the performance of this
technique is shown for a few cases including one where the blur
PSFisauniform function on a3 x 3 support and the signal-to-noise
ratio (SNR) is 30dB. In this paper, we consider the case of a uni-
form 5 x 5 blur PSF and SNR’saslow asonly 10dB. Our approach
for restoring such severely degraded images is still based on You
and Kaveh'stechnique. However, we show that the performance of
thistechnique isenhanced if it is preceded by an explicit denoising
step. Thisisinaddition totheimplicit denoising operation inherent
in You and Kaveh's technique.

For the denoising step, we use a block-based, non-linear filter-
ing algorithm based on the theoriesof singular val ue decomposition
(SVD) and compression-based filtering [3, 4]. The algorithm also
employs an efficient method for estimating the noise power from
the input data with no additional a priori information. A major
characteristic of both the image deblurring and the dencising algo-
rithmsistheir ability to preserve edge details.

In Sections Il and 11l we provide brief descriptions of the
deblurring and denoising algorithms employed in our proposed
system. In Section IV we present experimental results and we
compare our scheme with that by You and Kaveh on images that
are both severely blurred and noise corrupted. Some concluding
remarks are given in Section V.

2. THE DEBLURRING COMPONENT OF OUR SYSTEM
In this paper, we assume an image degradation model of the form
g(n) = (d* f)(n) + w(n) ;foraln € Q, (1)

where n = (n1,n2) denotes the discrete coordinates for image
pixels, f istheorigina image, d isthe unknown blur PSF, x denotes
thetwo-dimensional convolution, g istheobserved (blurred) image,
w denotes the additive noise present in that image, and Q denotes
the rectangular support for both f and g. It isalso assumed that the
additive noise w isi.i.d. Gaussian and independent of both f and d.
In addition, since there isno loss of energy in the imaging system,
it isfurther assumed that the components of d are nonnegative real
numbers that add up to one. That is,
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where D denotes the unknown support for the blur PSF.

The goa in blind image deblurring is to find good estimates
for both the blur PSF d and the origina image f, based on the
observed image ¢ in (1). Assuming that d is known, a solution
to this problem is given in [2]. In [1], You and Kaveh extend
that technique to the blind restoration case formulated above. In
summary, their double regularization technique tries to minimize
some cost function for estimating f and d as f and d, drawn from a
“reasonable’ set of solutions. Thisset of solutionsisdefined by two
regularization constraints. Oneaccountsfor thefact thatimagesare
generally low bandwidth signals which do not exhibit much high
frequency content, except in the vicinity of edges and in textured
regions. The other is based on the assumption that the blur PSF is
also alow bandwidth signal; an assumption which is particularly
validfor photographic blurs. Theimposition of theseregularization
constrai ntsal so reducesthe search spacefor solutions. Specificaly,
You and Kaveh's technique tries to minimize the cost functional
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where a and ¢ are the highpass filter regularization operators, W/
is aweight function, and X\ and ~ are the Lagrangian multipliers,
better known as the regularization parameters. If we ignore the



effect of W for the moment, the goal in the above minimization
problem is to find an estimate f which makes the mean sgquared
estimation error (the first term in (3)) small and yet would not
allow f and d to have too much high frequency content. In other
words, the second and the third summationsin (3) are penalty terms
for high frequency content in f and d, respectively. The weight
function W makes it possible to allow high frequency content in
f in the high activity (edge and texture) regions and to heavily
penalize such content in low activity (smooth) regions.

The cost functional defined in (3) is quartic in its variables,
the samples of f and d. To avoid this complication, an alternate
minimization approach was used in [1]. In each iteration, f isfirst
kept fixed and L(d f) is minimized over d. Then, d is kept fixed
at the value just found and L(d, f) is minimized over f. Each
of the two subproblems solved in each iteration is quadratic in its
variables and is solved with the conjugate gradient method, which
isiterative itself. It is also necessary to impose the nonnegativity
and range constraints on both d and f, as well as the constraint (2)
on d. These constraints are enforced after each subproblem has
been solved, and not within the iterations of the conjugate gradient
method. Yet another aspect of the problem isthe uncertainty about
the blur PSF support D. You and Kaveh start with a conservative
large support. As the algorithm goes through its iterations, one
observes that the samples of d onits outer layers gradually vanish,
and one can prune D accordingly. For pruning, we used a strategy
similar to the one described in[1].

Themethod described above works reasonably well, except for
two well known problems; (a) convergence to local minimaand (b)
lack of agood way of determining the values of the regularization
parameters A and . You and Kaveh propose away of setting these
parameters [1]. However, as they have pointed out in their paper,
these values are meant to be used as guidelines only and not as
exact values.

3. THE DENOISING COMPONENT OF OUR SYSTEM

You and Kaveh's method includes an implicit denoising scheme.
However, under severe noi se degradation, we expect that an explicit
noise filtering scheme should improve the overall performance of
their algorithm. One of the major drawbacks of conventional fil-
tering techniquesisthat they tend to blur the original image or they
require some prior knowledge of the image or noise characteris-
tics. In [3], the authors describe an efficient non-linear filtering
scheme, based on the theories of singular value decomposition and
compression-based filtering [4].
The main steps of this SV D-based filtering algorithm are:

1. Divide the noisy image g into non-overlapping blocks.

2. Perform SVD on each block, set to zero the singular values
that are smaller than athreshold ¢, and reconstruct afiltered-
version of theoriginal block using thesenew singular val ues.

Given anm x n block B, the SVD of B isgiven by
B = UpSpVf, (4)
where U UE; = I, Vp isan orthogonal matrix, and

ZB - diag(ﬁl,ﬂb---,/@n) (5)

isadiagonal matrix. The diagonal elements of > are called the

singular valuesof B. Givenathresholde, let S = diag(By, Ba, ..., Ba),

where 8, = 3: if B; > e and 3, = 0if 3 < e. Then, the filtered
block B  isdefinedas B’ = UpZ5 VL.

The effectiveness of this algorithm depends on the accuracy of
the estimate of the threshold e. In this paper, we estimate e using
the following compression-based calibration scheme [3, 4].

1. Apply thefiltering algorithm for variousval ues of thethresh-
olde.

2. Compress each filtered image using a lossless compression
agorithm, such aslossless JPEG.

3. Plot the compressed size as a function of ¢. Let ¢* be the
knee-paint of the plot. Usee = ¢* as the threshold in the
SVD filtering algorithm. If S denotes the compressed size
of afiltered image, the kneepoi nt is defined as the point at

which the second derivative ( Tiog (7 IS maximum.

Note that for a set of noisy images obtained under the same
noise conditions, the calibration scheme has to be performed only
once for atypical image in that set. A more detailed example is
given in the next section.

4. EXPERIMENTAL RESULTS

We performed two sets of experiments with two blurred and noise-
corrupted imagesinvolved ineach set. First, we applied the deblur-
ring algorithm of Section Il aone. Then, we deblurred the same
images by first passing them through the denoising algorithm of
Section |11 and then applying the deblurring algorithm of Section |1
to the denoised images. The blurred images were obtained by arti-
ficially blurring the Cameraman image. Thisisa 256 x 256, 8-hit,
gray-scale image, which is commonly used in image deblurring
experiments. We used the blur PSF

d( ) . 0.04 ; |if |n1| <2, |n2| <2
=10 . otherwise ’

and we further corrupted the blurred images with additive white
Gaussian noise. The signal-to-noise ratio (SNR) for the two test
images was 20dB and 10dB. The SNR is defined as

Uif
SNR = 10logy, —— ,
Ow

where 0%, denotes the variance of the noise and o7, ; denotes the
variance of the blurred image.

Following the calibration scheme described in the previous
section, each of the blurred and noisy images was filtered for
various values of the threshold ¢ between 0 and 200. In all cases,
we used an 8 x 8 block size. For SNR = 20 dB, Figure 1 shows
a plot of the normalized size of the compressed filtered image as
afunction of e. Also shown is the second derivative of the curve
with respect to log(e).

From Figure 1, there are two knee-points, one at ¢ = 35 and
one a ¢ = 125. The first one was expected from the theory of
compression-based filtering [3], and denotes the point by which
most of the noise has been removed. After this point, the increase
in compression is less obvious, indicating the start of removing
image information. We believe that the second knee-point is due
tothe blur inthe origina image. At this point, thereisenough loss
of image information so that the origina blur plays no additiona
role in the compressibility of the filtered image. Therefore, we
ignored the second knee-point and selected ¢ = 35 as thefiltering



100 Ao :
09 |\ Compressed !

|
|

0.80 | : :

5 0.70 |
g
% 0.60 |
£
g 0.50 .
g 040 .
[0
0.30 .
0.20 .
0.10 .
0.00

0.00 50.00 100.00 150.00 200.00
Threshold €

Figure1: Sizeof compressed filteredimageversuse, anditssecond
derivative. SNR = 20db.

threshold. Using asimilar approach, for SNR=10 dB, we selected
afiltering threshold of ¢* = 100.

In al cases, the deblurring algorithm was ran with an initial
support D = {—4,...,4} x {—4,...,4} for the blur PSF. This
is larger than the actual support size for the blur PSF, since, in
practice, the original sizeis considered unknown. A first estimate
of the size of D can be obtained by inspecting the blurred imagein
the vicinity of an edge separating two regions of almost constant
pixd intensities. If computations are not too excessive, theniit is
advisable to start the algorithm with a slightly larger support size
than thisfirst estimate.

For both regularization operators (the highpass filters c and )
we used the Laplace filter

0o -1 o0
-1 4 -1 .
0o -1 0
Thisisactualy one of the two filters suggested for this purposein
[1]. Following [2, 1], we used aweight function of the form
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where o(n) is the local variance of the blurred image ¢ at pixel
n. Thisvariance is high in the edge and texture regions and low in
smooth regions.

In (6), You and Kaveh use o = 1000/03,,, Where o2, isthe
maximum value for the local variance o®(n). We found exper-

imentally the o value at which % = 2,000 to be a good
choice. This choice yields a restored image that has fairly sharp
edges and yet it is not grainy in areas where it is supposed to be
smooth. Thelocal variance at pixel location n was computed over
a3 x 3window centered at n.

The results of our experiments are shown in Figures 2 and 3

for the two cases of 20dB SNR and 10dB SNR, respectively. In

all cases, the deblurring algorithm was run for 50 iterations, even
though the results were equally good after 20 iterations. In the
conjugate gradient algorithm, in order to find the best f for agiven
d, we restricted the number of iterations to ten. To find the best
d for agiven f, instead of using the conjugate gradient method,
we used the direct method of (@) differentiating the cost function
L(d, f) with respect to d, (b) setting these derivatives to zero, and
(c) solving the resulting system of linear equations for d. Table1
shows the values of the regularization parameters used to obtain
each deblurred image. As expected, we had to use larger \'s (i.e.,
larger degrees of regularization) for noisier images.

Imagein || Regularization Parameters
Figure A | vy
2(0) 10° 10°
2(d) 2 108

3(0) 10* 3x 10°

3(d) 10 3x 10°

Table 1. Regularization parameters used for obtaining the four
deblurred images.

In all cases, the deblurring algorithm was able to estimate the
blur PSF very accurately and the pruning of the blur PSF support
D took place as predicted. In fact, the algorithm converges to the
right size for D very fast. Regarding the output images from the
deblurring algorithm, from Figures 2 and 3, images 2(d) and 3(d)
are perceptually better than the images 2(c) and 3(c), respectively.
Therefore, we conclude that denoising does indeed improve the
deblurring process when the blurred images are very noisy.

5. CONCLUSIONS

Noise in images may significantly affect the performance of even
the best of the deblurring algorithms. In this paper, we presented
an algorithm for the blind restoration of blurred and noisy images
that combines the deblurring efficiency of You and Kaveh's a-
gorithm with the filtering efficiency of an SVD-based filter. Our
scheme requires no prior knowledge of either the image or noise
characteristics and performs well even at low SNRs.
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Figure 2: From top to bottom: (a) Image blurred with the 5 x 5
uniform blur PSF, SNR=20dB, (b) result of applying thedenoising
algorithm to theimagein (a), (c) result of applying the deblurring
algorithm to theimagein (a), (d) result of applying the deblurring
algorithm to the image in (b).

Figure 3: From top to bottom: (a) Image blurred with the 5 x 5
uniform blur PSF, SNR=10dB, (b) result of applying thedenoising
algorithm to theimagein (a), (c) result of applying the deblurring
algorithm to theimagein (a), (d) result of applying the deblurring
algorithm to theimage in (b).



