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ABSTRACT

A limitation of the existing maximum likelihood (ML)
based methods for blur identi�cation is that the estimate
of blur is poor when the blurring is severe. In this pa-
per, we propose an ML-based method for blur identi�ca-
tion from multiple observations of a scene. When the re-
lations among the blurring functions of these observations
are known, we show that the estimate of blur obtained by
using the proposed method is very good. The improvement
is particularly signi�cant under severe blurring conditions.
With an increase in the number of images, direct compu-
tation of the likelihood function, however, becomes di�cult
as it involves calculating the determinant and the inverse
of the cross-correlation matrix. To tackle this problem, we
propose an algorithm that computes the likelihood function
recursively as more observations are added.

1. INTRODUCTION

In actual practice, the blur has to be estimated from the
degraded image itself. The earliest work on blur identi�-
cation concentrated on point spread functions (PSFs), the
Fourier transforms of which have zeros on the unit bi-circle
[1]. In more recent work, the original image is �rst modeled
as a 2-D autoregressive (AR) process and the identi�ca-
tion problem is formulated as a maximum likelihood (ML)
problem. Tekalp et al. [2] showed that the ML estimation
problem could be interpreted as an autoregressive moving
average (ARMA) model identi�cation problem. Lagendijk
et al. formulated blur identi�cation and image restoration
as constrained ML estimation problems [3]. An iterative
approach called the expectation-maximization (EM) algo-
rithm has been used in [4, 5] to �nd the ML estimates of
the image and blur parameters. In [6], a hierarchial blur
identi�cation method based on the EM algorithm is pro-
posed to identify a severe blur. Pavlovic et al. [7] propose
parametric modeling of the blur in the continuous spatial
co-ordinates to identify the extent of the PSF. An overview
of the development in image and blur identi�cation under
the ML framework is given in [8].
Recently, the recovery of an image from its multiple,

distorted observations has been receiving much attention.
Multiple, blurred views (same or di�erent distortions) of a
common object provides information that can be used to

�Financial assistantship from the Alexander von Humboldt

Foundation is gratefully acknowledged.

advantage in image restoration. In [9], Katsaggelos et al.

suggest an algorithm that incorporates a number of dis-
torted versions of a signal and results in a restoration error
approaching zero with fewer iterations. In [10], Ghighlia de-
velops a scheme for image restoration from multiple, blurred
images based on the constrained least squares approach in
the frequency domain. Ward [11] considers restoration from
di�erently blurred versions of an image in the presence of
noise. In the above schemes, the PSF is assumed to be
either fully or partially known. In [12], Subbarao et al. re-
cover the original focused image from two blurred images
using the spatial domain convolution/deconvolution trans-
form and the Wiener �lter.

Existing ML-based methods yield a poor estimate of blur
when the blurring is severe [5, 6]. In this paper, we propose
a method that uses multiple, blurred views of the original
image to obtain an improved estimate of the blur when the
relations among the blurring functions are known. Some of
the practical cases of interest where the relation between
the PSFs is known are depth from defocused images [13],
electron microscopy [14] etc. Since, computation of the
likelihood function becomes cumbersome as the number of
blurred images increases, we propose a method to compute
it recursively.

2. ML-BASED BLUR IDENTIFICATION

FROM MULTIPLE IMAGES

Let the discrete original image f(i; j) be modeled by a 2-D
AR process having coe�cients a(i; j), with a causal support
and driven by a zero mean homogeneous Gaussian white
noise process v(i; j). Let the observed blurred image g(i; j)
be modeled as the output of a 2-D linear space-invariant
system with point spread function (PSF) h(i; j) and the
observation noise w(i; j) be an additive, zero-mean white
Gaussian process independent of v(i; j). Under the assump-
tion of circular convolution, we get in the frequency domain,
F = (I��A)

�1V and G = �HF +W where F , G, V and
W are the DFTs of the sequences f(i; j), g(i; j), v(i; j) and
w(i; j), respectively. Matrices �A and �H are diagonal with
entries that correspond to the DFTs A(k; l) and H(k; l) of
the sequences a(i; j) and h(i; j), respectively.

Henceforth, we shall derive mathematical relationships
for 1-D signals for notational simplicity. Given M di�er-
ently blurred versions of the image f(j), we have,

Gi = �HiF +W i; i = 1; 2 : : : ;M; (1)



where �Hi is a diagonal matrix whose entries are the DFT

Hi(k) of the i
th PSF hi(j) and W i is a white Gaussian noise

process such that W i and W j are statistically independent
for i 6= j.
We �rst examine the joint probability density function

(pdf) p(G1;G2; : : : ;GM ). Notationally, the bar in Gi rep-
resents the process while Gi is a realization of the pro-

cess. Let GM =
h
G1T G2T : : : GMT

iT
and GM =h

G1T G2T : : : GMT
iT

. Here, `T ' represents transpose.

It is straightforward to show that GM is jointly Gaussian.
Therefore,

p(GM ) =
1
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where E is the expectation operator, the block matrix PM =

E

h
GM GM

H
i
=

�
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�
; i; j = 1; 2; : : : ;M , and P i;j =

E

h
Gi Gj

H
i
. Here, `H' represents the Hermitian operator

and N corresponds to the length of the sequence. It can be
shown that

P
i;j = �

2
v�Hi(I ��A)

�1(I � �A)
�H�HHj + �

2
w �i;j I ;

where �2v and �2w are the AR model noise and observation
noise variances, respectively. It may be noted that P i;j is a
diagonal matrix whose kth diagonal element is given by

P
i;j(k; k) =

Hi(k)H
�

j (k)

j1 �A(k)j2
�
2
v + �

2
w �i;j ; k = 0; 1; : : : ;N � 1 :

(2)
Let the unknown parameters be denoted by the vector

� = fa(j); h1(j); : : : ; hM(j); �2w; �
2
vg. The blur identi�ca-

tion problem focuses on estimating the unknown parame-
ters hi(m); i = 1; : : : ;M from the M noisy and blurred
observations. The maximum likelihood estimator of � is
then given by

min
�
FM(�) where FM (�) = log (detPM ) +G

H
MP

�1
M GM :

(3)
Unfortunately, (3) speci�es a complicated non-linear opti-

mization problem in several variables (the PSFs, the param-
eters of the image model, and the noise variance), mainly
because of the non-quadratic behavior of log detPM . Since
an analytic solution for �̂ cannot be found in general, one
has to consider numerical solution strategies like the gradi-
ent descent algorithm to minimize FM(�). Low order para-
metric image and blur models when incorporated into the
identi�cation scheme make the identi�cation algorithm ap-
plicable to more realistic blurs and improve the identi�ca-
tion results. We propose to reduce the number of unknown
parameters in � by assuming that we have some knowledge
about the structure of the PSF in di�erent channels. For
example, in the scheme on recovery of depth from defocused
images [15, 16], the camera blur is usually modeled as a 2-D
Gaussian function and for di�erent lens settings, the blur
parameter �i corresponding to the ith blurred image is re-
lated by �1 = �i�i + �i; i = 2; : : : ;M , where �i and �i are
known constants.

3. RECURSIVE COMPUTATION OF THE

LIKELIHOOD FUNCTION

To compute FM(�), direct evaluation of detPM and P
�1
M

in equation (3) would be very cumbersome for increasing
M . In this section, we propose a method that recursively
computes FM(�).
The block matrix PM can be written in partitioned form

as

PM =

�
PM�1 DM

DH
M PM;M

�
;

where DH
M =

�
PM;1 : : : PM;M�1

�
. It should be noted that

PM;M is always diagonal.
From the partitioned matrix inversion lemma [17], we

obtain

P
�1
M =

�
AM BM

BH
M CM

�

where CM = (PM;M
� DH

MP
�1
M�1DM)�1, BM =

�P�1M�1DMCM and AM = P�1M�1+P�1M�1DMCMDH
MP�1M�1.

It may be noted that CM is always diagonal. Hence,
it is trivially determined. However, block matrices AM

and BM are not diagonal, in general, and are given by

AM =
�
A
i;j

M

�
; i; j = 1; : : : ;M � 1 and BM =

�
Bi
M

�T
; i =

1; : : :M � 1, where Ai;j

M and Bi
M are diagonal matrices for

all i; j.
Using the determinant lemma for partitioned matrix [17],

we get detPM = (detPM�1) det(P
M;M

�DH
MP

�1
M�1DM) =

(detPM�1) det(C�1M ). Therefore, from equation (3), we
obtain

FM(�) = log(detPM�1)+log(detC�1M )+GH
MP

�1
M GM : (4)

Now, it can be shown thatGH
MP

�1
M GM = GH

M�1AMGM�1+

GH
M�1BMG

M +GMH

BH
MGM�1+GMH

CMGM . By substi-
tuting for AM and using equations (3) and (4) we get the
important recursive relation

FM(�) = FM�1(�) + log detC�1M +G
H
M�1P

�1
M�1DMCM

D
H
MP

�1
M�1GM�1 +G

H
M�1BMG

M
+G
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B
H
MGM�1 +

G
MH

CMG
M

: (5)

We now proceed to compute the likelihood function for
di�erent values of M .

3.1. Computation of F1(�)

This case is quite straightforward. From (3),

F1(�) = log detP1 +G
H
1 P

�1
1 G1 :

Now, P1 = P 1;1. But P 1;1 is a diagonal matrix. Hence, its
inversion is trivial. Therefore,

F1(�) =

N�1X
k=0

log
�
P
1;1(k; k)

�
+

��G1(k)
��2

P 1;1(k; k)
: (6)

This expression is exactly the same as the one derived in
[8] for the case of a single image. Thus, our formulation
provides a general framework in which M = 1 is a special
case.



3.2. Computation of F2(�)

From (5), we have the recursive relation

F2(�) = F1(�) + log detC
�1
2 +G

H
1 P

�1
1 D2C2D

H
2 P

�1
1 G1

+GH
1 B2G

2 +G
2H
B
H
2 G1 +G

2H
C2G

2
:

Since, the matrices involved in the computation are all di-
agonal, it is easy to show that

F2(�) = F1(�) +

N�1X
k=0

log

�
1

C2(k; k)

�

+C2(k; k)

����G1(k)
P 21(k; k)

P 11(k; k)
�G

2(k)

����
2

where C2(k; k) =
1�

P 2;2(k; k)�
jP2;1(k;k)j

2

P1;1(k;k)

�

and B2(k; k) = �
P 1;2(k; k)C2(k; k)

P 1;1(k; k)
:

Thus, F2(�) is known. Note that the superscript 2 immedi-
ately on G corresponds to the FFT of the second observa-
tion, and not G raised to its 2nd power.

3.3. Computation of FM (�)

One may continue proceeding as above to obtain the general
terms in the expression for FM(�). However, the expression
becomes unwieldy beyond M = 2. Here we provide the
steps involved in computing the likelihood function recur-
sively.

Step 1: Initialize F1(�) = log detP1 + GH
1 P

�1
1 G1. Min-

imize F1(�) to obtain the estimate � = �1 and set
M = 2.

Step 2: Obtain CM =
�
PM;M

�DH
MP

�1
M�1DM

�
�1
.

Step 3: Obtain BM = �P�1M�1DMCM .

Step 4: Calculate the FFT of the M th observation gM .

Step 5: Compute FM(�) = FM�1(�) + log detC�1M +
GH
M�1P

�1
M�1DMCMDH

MP
�1
M�1GM�1 +GH

M�1BMGM +

GMH

BH
MGM�1 +GMH

CMGM .

Step 6: Minimize FM (�) using �M�1 as the initial estimate
and obtain �M .

Step 7: M  M + 1 and goto step 2.

4. SIMULATION RESULTS

In this section, we present simulation results on blur identi�-
cation based on the proposed method, under severe blurring
conditions. We illustrate the improvement in the estimate
of the blur parameter with multiple blurred images. We
compare the estimate of blur corresponding to M = 1; 2
and 3 distorted observations. Here, we consider the spe-
cial problem of blur due to camera defocusing where the
blurring can be parameterized in terms of the spread � of
a Gaussian function [15]. The relations between the stan-
dard deviations of the blurred images are assumed to be
known. The order of the AR model was chosen to be 2.

The proposed ML based identi�cation algorithm was im-
plemented on the blurred image in the presence of zero-
mean, white Gaussian noise that is independent of the im-
age, with SNR = 40 dB and 10 dB, respectively for two
separate cases. The cameraman image of size 64�64 pixels
was severely blurred by a 2-D Gaussian out-of-focus blur
with standard deviation �1 = 3:0. The estimate of �1 ob-
tained by using only this blurred image was 1:42 and 1:14
for SNRs of 40 dB and 10 dB, respectively. The estimate
was poor, as expected, because of the absence of high fre-
quency content in the image. Next, we generated a second
blurred image by blurring the original image with Gaussian
functions having standard deviations �2 ranging from 1:5
to 4:5. The errors in the estimates of �1 corresponding to
these values of �2 are plotted in Fig. 1. As may be noted
from the plot, the estimate of �1 improves (and so does its
immunity to noise) when �2 is either small or large as com-
pared to �1. The improvement is better when the second
image is more focused than the �rst. We generated a third
blurred image with �3 ranging widely from 0:1 to 9:0. We
then estimated �1 for these values of �3 for the cases when
�2 = 1:5 and �2 = 4:5. The corresponding estimates are
plotted in Figures 2 and 3, respectively. From the plots, we
again observe that the estimate of �1 improves signi�cantly
when the third image is relatively either more focused or
more blurred than both the �rst and the second blurred
images. The improvement in the estimate is better when
�3 is smaller than both �1 and �2. Also, the estimate is
better for �2 = 1:5 as compared to that of �2 = 4:5, as
expected. As the third image becomes progressively more
focused or blurred, the estimate of �1 exhibits a signi�cant
immunity to noise.

5. CONCLUSIONS

Existing maximum likelihood based methods for blur iden-
ti�cation give poor estimates under severe blurring con-
ditions. In this paper, an ML-based blur identi�cation
method that uses multiple blurred versions of the origi-
nal image has been proposed for improving the estimate
of blur. The degree of improvement in the estimate of the
blur is dependent on the relative blurring among the images.
The more the relative blurring, the better is the estimate.
The estimate of blur exhibits better immunity to noise with
multiple images. We have also proposed a scheme to �nd
the maximum likelihood function recursively because di-
rect computation of the likelihood function becomes di�-
cult with increasing number of images.
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Figure 1. Magnitude of the error in the estimate of �1
for various values of �2 for the cameraman image. The
continuous and the dotted lines correspond to two di�erent
SNRs of 40 dB and 10 dB, respectively.
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Figure 2. Magnitude of the error in the estimate of �1 for
various values of �3 for the cameraman image. The value
of �2 is 1:5.
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Figure 3. The same plot as in Fig. 2, but computed for
�2 = 4:5.


