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ABSTRACT

In this paper, a new filter that is
performing color image enhancement is presented.
The filter is achieving this through the
minimization of a weighted cost function. The
weights are determined using potential functions
which are calculated in such a way as to convey
spatial information. Application of the proposed
filter on a real blurred and noisy color image is
performed to verify its enhancement capabilities.

1.  INTRODUCTION

Many of the signals available for
processing nowadays are of vectorial nature and
for optimal output results vector techniques have
to be employed. Color images is another example
of vector valued signals. These images compared
to grey scale ones contain more information and
are more appealing to the human observer. Are
thus used more and more in several scientific
applications as well as in every day life.

Vector processing methods exhibit
significant advantages over single channel
approaches, preserving the existing correlation
between the channels.  Order statistics type filters
play a key role in the processing of these signals
and several multivariate ordering techniques have
been proposed in the literature[1,2]. Another
similar approach to solve the vector ordering
problem is by means of the minimization of  an
appropriate cost function[3,4].

Cost functions based on different distance
measures find an ever increasing number of

applications in several areas of multichannel
signal processing. Vector ordering is controlled by
certain parameters of the cost function.

In this work the minimization of the
combination of two different  distance  functions
is used in order to select the output vector for the
case of color images. Although in most cases the
two functions have similar characteristics, in
certain cases, due to particular signal features and
cost function�s parameter setting, their outputs
differ. In addition the two functions do not have
exactly the same spatial domain of application.
The combined information given by the two cost
functions is used advantageously to achieve edge
enhancement and noise suppression at the same
time.

2. THE NEW COST FUNCTION

Pixels in color images can be represented
as vectors in the RGB space. Thus a single pixel
can be defined as:

                              X i i i i

T
[r ,g ,b ]=

(1)
where ri ,gi ,bi are the red, green and blue
components of pixel i. In this representation
however, valuable information about the pixels�
distribution on the image plane is ignored.
Attempts to incorporate this type of information
can be found also in other works [5].

Given a rectangular filter window WN of
size N, scanning the color image plane, for each
window position a set of N vectors is used in the
filtering process.



The proposed new algorithm for image
enhancement is based on the selection of the
vector within each WN (closeness is assumed) that
minimizes the following weighted aggregate
distance formula:

                  d g( ) ( )i i i j

j 1

N

X X X X= ∗ −
=

∑             (2)

where Xi is one of the vectors in WN and º.º is the

L2 vector norm.
In the above formula the  weight  g(Xi) is

the conveyor of the spatial information and the
new function g(X) is defined over a new local
window WM, centered  on vector Xi. The size of

the new  window is M and in general N≠M. An
illustration of the enlarged window used, is given
in Figure 1 below, in this case N=M=9.
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Figure 1: Enlarged filter window.

The potential functions[6] (PFs) are
utilized to define g(Xi).  According to potential
function theory, each pixel is being regarded as an
energy source creating a homogeneous, decreasing
with distance, field around it. The function
describing this field may not be restricted to the
conventional, well known from physics, ones (i.e.
gravitational), but can be any monotonically
decreasing function of distance [7].

As such the following exponential function
is chosen:
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where, the parameter h is a constant determined
globally and its value selection is based on  the
image noise content. M is the number of pixels
contained in the neighbourhood of pixel Xi. In the
above formula -1 is included in order to exclude
contribution from pixel Xi.

The calculation of the PF in the
neighbourhood of each pixel makes it embody
spatial information as was desired. Then g(Xi) is
set equal to:
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Obviously, if

                      g( ) 1iX =      for i=1,... ,M             (5)

the minimization procedure will lead us to the
selection of the well known vector median.

3. METHOD  OF OPERATION

As seen from eq. (1), the described
filtering process  is the product of  two  different
distance functions, defined over adjacent filter
windows. In this section the operation and basic
properties of each one are analysed separately.

The behaviour of  the scalar function f(X):
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(6)
has been extensively examined  in the literature.
Of particular interest is its response to steps,
impulses, ramp signals and random noise.
Although its minimum value selection is the
optimum in the case of biexponentially noisy
conditions this is not so for other noise
distributions and non stationary signals. An
improvement is thus sought in these cases.

Potential functions are basically
probability density function estimators in the
neighbourhood of each Xi [8] and are used in eq.
(2) to include this additional information, along
with the spatial, modulating the cost function f.
This action is illustrated in the following example.

In Figure 2a a noisy three-component one-
dimensional edge is shown.  For the pixels of this
edge, the function f(X) has been calculated
through (6) and using a window WN spanning all
the pixels, which means N=11. Its minimum
value, as can be observed in Figure 2b,
corresponds to one of the pixels in the transition
area of the edge (pixel number 6), which is the
vector median.
 Next, the function p(X) is calculated using
(3). The window WM has a size of M=3 pixels,



which means that for each pixel Xi two
neighbouring pixels determine its potential. Since
the potential�s value is high in areas of high pixel
consentration in the RGB space and,
correspondingly, low for low consentration, it is
expected that flat area pixels will exhibit high
values of p(X) and transition area pixels, as well
as impulses, low values. It should be pointed out
that these statements may not hold if parameter h
is not chosen correctly. Its value depends on the
window size M and on the noise variance. A
detailed study on the method for choosing h can
be found in [2] and [8]. Assuming gaussian

distribution noise with variance σ2, it is found that
h should be of the order of M-1/7[2]:

                          ( )h= 3M
1/ 7

σ π π
(7)

g(X), which is the inverse potential
function, will be low in flat areas and high in
transition areas, as displayed in Figure 3c
(normalized). Thus, acting as coefficient in (2) it is
modulating (6), decreasing the cost function value
for flat area pixels and increasing it for transition
area ones. At the same time, the cost remains high
for impulses. The final cost function d(Xi) for the
pixels of Figure 2a is shown in Figure 2d. It can
be seen now that d�s minimum has moved to one
of the flat area pixels.

Thus, by following the procedure of
choosing as output Y of the filter the pixel with
minimum d:

                     Y X= arg(min{ ( )})id                    (8)

will result in edge enhancement and impulsive
noise suppresion. Decrease in gaussian noise in
flat image areas is also expected, since the
potential function p will yield maximum (g will
correspondingly be minimum) for the pixel with
higher probability, as it acts as an estimator of the
pixels� probability density function[2,8].

4.  APPLICATION TO IMAGES

The edge enhancement and noise
attenuation properties of the presented method
have also been visually verified. In Figure 3a the
image �peppers� is shown, blurred with an
averager of window size 3x3 and corrupted with

gaussian noise of variance 100 and impulsive 1%
in each channel. In Figure 3b the same image is
displayed after enhancement with the proposed
method. As can be seen, the blurred edges have
been enhanced. Also, the impulses have been
removed and the gaussian noise has been reduced.
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