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ABSTRACT

Median based �lters have gained wide-spread use because
of their ability to preserve edges and suppress impulses.
In this paper, we introduce the Closest-to-Mean(CTM) �l-
ter, which outputs the input sample closest to the sample
mean. The CTM �ltering framework o�ers lower computa-
tional complexity and better performance in near Gaussian
environments than median �lters. The formulation of the
CTM is derived from the theory of S-�lters, which form a
class of generalized selection-type �lters with the features
of edge preservation and impulse suppression. S-�lters can
play a signi�cant role in image processing, where edge and
detail preservation are of paramount importance. We com-
pare the performance of CTM, median, and mean �lters in
the smoothing of edges and impulses immersed in Gaussian
noise. A su�cient condition for a signal to be a root of the
CTM �lter is included.

Data, �gures and source code utilized in this paper are avail-
able at http://www.ee.udel.edu/signals/robust

Keywords - Selection �lters, Closest-to-Mean �lter,
S-�lters, selecti�cation, edge preservation, root signals, lo-
cally monotonic signals, curvature, median �lters.

I INTRODUCTION

Extracting signals from noisy data is a common problem
faced in signal processing. In instances where contamina-
tion is additive and Gaussian, linear methods often provide
the optimal tools. However, in the presence of signal edges
and/or impulsive noise, the signi�cant performance degra-
dation presented by linear smoothers makes it necessary to
resort to alternative nonlinear techniques.
Median �lters have proven to be useful for smoothing

applications in which edge preservation and impulse sup-
pression are important requirements. Based on the nature
of human visual perception, the above two properties are
very important in image processing, where median based
�lters have gained overwhelming popularity [1].
Among the drawbacks of median �lters, it is worth men-

tioning their lack of 
exibility as well as their relatively high
computational complexity 1. A further drawback of median
based �lters occurs in near Gaussian environments, where
the sample median can lose as much as 40% e�ciency com-
pared to the sample mean [2].
As an alternative that overcomes the above limitation-

s, this paper introduces the Closest-to-Mean (CTM) �lter.
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The complexity associated with the computation of the sam-

ple median is, in general, on an order greater than or equal to

O(N logN), where N is the sample size.

This new �lter has its theoretical foundations based on the
well known class of M-estimators of location [2, 3]. Using
a procedure called selecti�cation, an M-estimate can be re-
stricted to be one of the input samples, providing it with
the same selection property that median-based �lters have
[4].
The CTM �lter is derived as the selection �lter associat-

ed with the sample mean via the selecti�cation procedure.
In view of the optimality properties of the sample mean in
Gaussian environments, the CTM �lter becomes a very sim-
ple and e�cient alternative for edge-preserving smoothing
of discontinuous signals in Gaussian noise.

II SELECTIFICATION OF A LOCATION
ESTIMATOR

Given a set of observations Sx = fx1; x2; . . . ; xNg and a
symmetric function �(x) which is monotonic nondecreas-
ing on [0;1), the location M-estimate associated with � is
de�ned as

�̂ = argmin
�

NX
i=1

�(xi � �); (1)

where argmin�(�) denotes the value of � that minimizes the
expression inside the parenthesis [2, 3]. When �(x) = x2,
for example, the solution of (1) is given by the sample mean,
whereas for �(x) = jxj, the solution is the sample median.
M-estimators are generalized forms of maximum-

likelihood estimators for which �(x) = � log f(x), where
f(x) is the probability density of the additive noise within
the samples. Depending on �, the minimization in (1) can
be computationally complex, involving expensive iterative
procedures. If we constrain the minimization space to be
equal to the sample set Sx, the computational complexity
of the problem can be easily reduced to O(N2). The out-

put, �̂s, of such a constrained or \selecti�ed" M-estimator
is de�ned as

�̂s = arg min
�2Sx

NX
i=1

�(xi � �): (2)

These selection type M-estimators are referred to as S-
estimators or S-�lters [4]. In addition to the computational
savings, the selecti�cation procedure provides M-estimators
with the properties of edge preservation and impulse sup-
pression exhibited by median �lters [4].

III THE CLOSEST-TO-MEAN FILTER

The simplest example of an S-estimate is generated from
applying the selecti�cation procedure to the sample mean.
In this case �(x) = x2, and the selecti�ed mean, hereafter



referred to as the Closest-to-Mean (CTM) estimator, is de-
�ned as:

�̂CTM = argmin
xj

NX
i=1

(xi � xj)
2
: (3)

More conveniently, this de�nition can be proven equivalent
to

�̂CTM = argmin
xi

jxi � �xj; (4)

where �x denotes the sample mean value. This formulation
of the estimator, intuitively depicted in Fig. 1, results in
an O(N) complexity, as opposed to the O(N2) complexity
associated with the de�nition in (3).

CTM

x1 x2 x3 x4 x5x
β

Σ(xi−β)2
N

i=1

Figure 1. Determination of the CTM �lter out-
put. The CTM value corresponds to the input data
which is closest to the sample mean.

IV ROOT SIGNALS ANALYSIS

An important problem for understanding the behavior of
a selection �lter is to characterize the signals that remain
unchanged after the �lter operation. The class of these
signals, called root signals, has been extensively studied for
the case of the median �lter, where the characterization of
the root signal set has played a fundamental role in the
general understanding of the �lter operation [1].
Characterizing the root signal set of the CTM �lter is a

very challenging problem, far from been complete. In this
section, we characterize an important subclass of CTM root
signals. We begin our work with a trivial proposition.

Proposition 1 Straight lines are preserved after the oper-
ation of the CTM �lter.

In view of the above result, it is logical to ask for condi-
tions under which signals with shapes \close" to a straight
line would be preserved by the CTM �lter. In order to
answer this question, we �rst introduce the following de�-
nitions:

De�nition 1 Let x(n) be a strictly monotonic signal. We
de�ne the instantaneous curvature of x(n) as:

C(n) =
���an+1 � an

an

��� ; (5)

where an denotes the di�erence x(n)� x(n� 1). We refer
to the non-negative value C = supn C(n) as the absolute
curvature, or simply the curvature of x(n).

It is easy to check that C = 0, if and only if x(n) is
a nonconstant straight line. Hence, C can be seen as an
indicator of how di�erent from a straight line the shape of
the signal is.

De�nition 2 The signal x(n) is locally monotonic of size
W if for any set of W consecutive points, the signal be-
haves monotonically, not necessarily strictly. In this case
we denote x(n) as being lomo(W ) [1].

De�nition 3 We refer to the signal x(n) as second order
locally monotonic of size W if it holds

1. x(n) is monotonic.

2. The di�erence signal a(n) = x(n+ 1)� x(n) is locally
monotonic of size W .

In this case we denote x(n) as being lomo2(W ).

Intuitively, lomo2(W ) signals can be seen as ensembles of
monotonic convex and monotonic concave pieces of length
larger than or equal to W .
The following result, which we o�er without proof, char-

acterizes a subclass of root signals of the CTM �lter:

Proposition 2 Let x(n) be a lomo2(2N + 1) signal with
curvature

C < 1�
�
N � 1

N + 1

� 1

2N�1

: (6)

Then, x(n) is a root signal of the CTM �lter for any window
length W � 2N + 1.
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C(n)

n
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Figure 2. Typical \bounded curvature" CTM root
signal as de�ned in Proposition 2. Top: Root signal
x(n). Bottom: Instantaneous curvature C(n). The
zero curvature regions indicate that the signal is
locally a straight line. (Window size W = 7).

V PROPERTIES AND APPLICATIONS

Although the exact theoretical analysis of the CTM �lter
performance looks di�cult, it is easy to show that its vari-
ance as a constant-signal estimator is bounded by:

V AR(Z(1)) � V AR(�̂CTM ) � V AR(Z(N)); (7)

where Z(i) represents the ith order statistic of the \cen-
tered" samples Zi = jxi � �xj (�x denotes the location pa-
rameter of the sample distribution).
The potential utility of the selecti�cation procedure ex-

ploited by the CTM �lter is illustrated in Fig. 3. In Fig. 3b,
the mean �lter has been used to smooth an image corrupted



by salt-and-pepper noise (Fig. 3a). The bad performance of
the mean �lter, indicated by both the smearing of edges and
the poor job in removing the impulses, is a well documented
fact in the image processing literature. Figure 3c shows the
drastic performance improvement introduced by the selec-
ti�cation of the mean �lter. The CTM-�ltered image shows
signi�cant impulse suppression and at the same time main-
tains sharper edges than those in the mean-�ltered image.

(a) Image of planes with salt-and-pepper noise

(b) Image after applying 3x3 mean �lter

(c) Image after applying 3x3 CTM �lter

Figure 3. Edge preservation and impulse suppres-
sion using the CTM �lter.

A word of caution shall be stated here. Although the
CTM �lter can perform impulse suppression duties where
the percentage of impulsive contamination is low, the CTM
is not a robust estimator. Much as the mean �lter does, the
CTM presents a large breakdown point, and its performance
can be signi�cantly lower than other robust �lters in impul-
sive environments. However, due to its intimate link with
the mean �lter, the CTM �lter can play a signi�cant role
in the smoothing of discontinuous signals in additive Gaus-
sian environments. Also, the impulse suppression capability
makes CTM �ltering appropriate for Gaussian noise signals
smoothing in the presence of low impulsive contamination.
Figures 4 and 5 illustrate the performance of both CTM

and median �lters when smoothing impulses and edges in
Gaussian noise. As it can be appreciated, both the median
and the CTM �lters perform the job of suppressing the

Noisy Impulse Signal

Median Output       

CTM Output          

H

Figure 4. Smoothing of an impulse in Gaussian
noise. (Window size W = 7).

Noisy Edge Signal

Median Output    

CTM Output       

H

Figure 5. Smoothing of an edge signal in Gaussian
noise. (Window size W = 7).

impulse, preserving the edge and smoothing the noise to
acceptable levels. The CTM �lter, however, presents much
lower computational complexity than the median �lter.
Figures 6 and 7 show Montecarlo-estimated mean abso-

lute errors in the above �ltering scenarios. Consistently for
both impulse (Fig. 6) and edge (Fig. 7) signal smooth-
ing, the CTM �lter outperforms the median �lter when the
Gaussian variance is large relative to the edge height or
the impulse magnitude. As the edge magnitude increas-
es, the median operates at the lowest absolute error in the
neighborhood of the edge, while the plots also show that,
although the CTM is not the best, the value of its error is
bounded. Out of the vicinity of either an edge or an impulse,
the mean �lter is the optimal smoother outperforming both
CTM and median �lters. The CTM �lter, however, still
shows better performance than the median �lter.

VI CONCLUSIONS

S-estimators are selecti�ed versions of M-estimators that
present the features of edge preservation and impulse sup-
pression when used in a running window �lter. The Closest-
to-mean(CTM) �lter is a novel selection-type �lter derived
from the theory of S-estimators. Its intimate link with the
mean �lter makes CTM �ltering appropriate for denoising
discontinuous signals in near Gaussian noise. We have ana-
lyzed several properties of this novel �lter. Its performance,
compared against the median �lter, has been illustrated us-
ing Montecarlo simulations. It has been demonstrated that
the CTM �lter outperforms the median �lter in edge p-
reserving applications with large Gaussian noise variance.
Some properties of the CTM �lter have been addressed,
including the characterization of a nontrivial class of the
�lter root signals. Due to its low complexity (on the order
of O(N)), CTM �ltering has a potential impact in applica-
tions where low computational cost is a paramount factor.
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Figure 6. Mean absolute error in the neighborhood
of an impulse in Gaussian noise when smoothed
with: (|)the mean �lter, (- -) the median �lter,
and (-.-) the CTM �lter. H=� denotes the ratio
between the edge height and the noise standard de-
viation.

Further e�orts are required in the study of the �lter's sta-
tistical properties, and the characterization of the complete
class of root signals. Generalizing the CTM �lter to al-
low the introduction of weights is an interesting problem
currently addressed by the authors. As illustrated in this
paper, the selecti�cation procedure could signi�cantly im-
prove the performance of linear FIR �lters in image pro-
cessing applications.
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(d) H=� = 10

Figure 7. Mean absolute error in the neighborhood
of an edge in Gaussian noise when smoothed with:
(|)the mean �lter, (- -) the median �lter, and (-.-)
the CTM �lter. H=� denotes the ratio between the
edge height and the noise standard deviation.


