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ABSTRACT

Embedding information into multimedia data, also called
watermarking, is a topic that has gained increased attention
recently. For video broadcast applications, watermarking
schemes operating on compressed video are desirable. We
present a scheme for robust watermarking of MPEG-2 enco-
ded video. The watermark is embedded into the MPEG-2
bitstream without increasing the bit-rate, and can be retrie-
ved even from the decoded video and without knowledge of
the original, unwatermarked video. The scheme is robust
and of much lower complexity than a complete decoding
process followed by watermarking in the pixel domain and
re-encoding. Although an existing MPEG-2 bitstream is
partly altered, the scheme avoids visible artifacts by adding
a drift compensation signal. The scheme has been imple-
mented and the results con�rm that a robust watermark
can be embedded into MPEG encoded video which can be
used to securely transmit arbitrary binary information at a
data rate of several bytes/second. The scheme is also appli-
cable to other hybrid coding schemes like MPEG-1, H.261,
and H.263.

1 INTRODUCTION

In todays video delivery and broadcast networks, issues of
copyright protection have become more urgent than in ana-
log times, since the duplication of digital video does not
result in the inherent decrease in quality su�ered by analog
video. One method of copyright protection is the addition
of a \watermark" to the video signal. The watermark is
a digital code embedded in the video which typically indi-
cates the copyright owner or, if applied to individual co-
pies of the video, the identity of the receiver of each copy.
This allows illegally reproduced copies to be traced back to
the receiver from which they originated, as shown in Fig.
1. For watermarking of video, a number of di�erent cha-
racteristics of the watermark are desirable. These require-
ments include invisibility (the embedded watermark should
be invisible), security (without knowledge of the exact pa-
rameters, unauthorized removal of the watermark must be
impossible once it has been embedded, even if the basic
scheme of watermark embedding is known), robustness (the
watermark should be such that it cannot be manipulated
without, at the same time, degrading the perceived qua-
lity of the video signi�cantly), low complexity, compressed
domain processing (for video stored in compressed format,
decoding+watermarking+re-encoding is not feasible), con-
stant bit-rate (the watermarked sequence must not occupy
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Figure 1. Broadcasting of video with individual wa-
termark embedding at the transmitter side.

more bit-rate than the unwatermarked), and interoperabi-
lity between uncompressed and compressed domains (the
watermark is embedded into compressed video and must be
retrievable from decompressed copies).
Previous work on watermarking includes watermarking

of still images [1, 2, 3, 4, 5], audio [6], and multimedia data
in general [7]. We present a new scheme for watermarking
of MPEG-2 compressed video which is of considerably lower
complexity than schemes for watermarking of uncompres-
sed video which require decompression and re-compression
when a compressed video sequence has to be watermarked.
For pay-per-view broadcast applications with individual en-
cryption, watermarking of compressed video gives the pos-
sibility of performing the watermarking at the receiver as
shown in Fig. 2. This reduces the complexity on the server
side and makes individual watermarking of di�erent copies
of a video more feasible. If decryption and watermarking
are implemented in a single chip or ASIC, and the decryp-
ted signal is not accessible before watermarking, this is a
secure mechanism.
In section 2, we brie
y introduce a scheme for watermar-

king of uncoded video that is based on ideas from spread
spectrum communications. In section 3, we extend the
scheme to the domain of MPEG-2 compressed video. We
incorporate the watermark into pre-compressed MPEG-2
bitstreams, and can retrieve it from the video even after de-
coding and without knowledge of the original video. Since
the encoded video is partly altered, we have to consider drift
due to motion compensation which we can compensate wi-
thin our scheme, as explained in section 3.2. In section 4, we
discuss practical aspects. We have implemented our scheme
for watermarking of MPEG-2 encoded video which works
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Figure 2. Broadcasting of video with individual wa-
termark embedding at the receiver side.

robustly and can embed arbitrary watermark information
into encoded video at a data-rate of several bytes/second.

2 DIGITAL WATERMARKING OF UNCODED
VIDEO IN THE PIXEL DOMAIN

The basic idea of watermarking for video is the same as
for images [2, 5, 7]: adding a noise-like signal to the video
pixels that is below the threshold of perception and that
can not be identi�ed, and thus removed, without knowledge
of the parameters of the watermarking algorithm. Our ap-
proach to accomplish this is a direct extension of ideas from
direct-sequence spread spectrum communications [8]. The
approach in [7] is similar and was developed independently.
Fig. 3 shows the basic steps of watermark embedding in

the pixel domain. For a mathematical formulation, please
refer to [9]. To embed a watermark, the information bits
aj 2 f�1; 1g to be hidden are �rst spread by a large sprea-
ding factor cr, in analogy to spread spectrum communica-
tions called the chip-rate. The purpose of spreading is to
embed one bit of information into many (exactly, into cr)
pixels of the video sequence. The spread bits are then mo-
dulated with a pseudo-noise sequence, yielding the water-
mark signal. The amplitude of the watermark signal may
be ampli�ed before �nally adding it to the pixels of the
line-scanned video sequence. The ampli�cation factor can
be varied according to local properties of the image and
can be used to exploit spatial and temporal masking ef-
fects of the human visual system (HVS). Because we use a
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Figure 3. Scheme for embedding information bits
into video pixels.

pseudo-noise signal for modulation, also the watermark is
a noise-like signal and thus di�cult to detect, locate, and
manipulate.
The recovery of the hidden information at the watermark

decoder is easily accomplished by correlating the watermar-
ked video signal with the same pseudo-noise sequence that
was used in the coder (see Fig. 4), where correlation can be
understood as demodulation followed by summation over
the correlation window. In our case, the width of the corre-
lation window for each information bit is just the chip-rate.

If the peak of the correlation is positive, the current trans-
mitted information bit is +1. If the peak of the correlation
is negative, the current transmitted information bit is �1.
After decoding of one bit, we proceed to the next cr pixels
containing the next bit. A condition for the scheme to work
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Figure 4. Scheme for retrieving information bits
from watermarked video pixels.

is that at the receiver the same unshifted pseudo-noise se-
quence is used that was used at the transmitter. Thus, even
if the receiver knows the basic scheme, he cannot recover
the information without knowledge of the used pseudo-noise
sequence and its possible shift. Please note also that we do
not use the original video sequence for retrieving the wa-
termark. However, if we do know the original sequence, we
can make the scheme more robust by subtracting it from
the watermarked sequence prior to correlation.

3 DIGITAL WATERMARKING OF CODED
VIDEO IN THE

MPEG-2 BITSTREAM DOMAIN

MPEG-2 bitstream syntax allows for user data being incor-
porated into the bitstream. However, this is not a suitable
means of embedding a watermark, since the user data can
easily be stripped o� the bitstream, and vanishes after de-
coding anyway. Again the key idea is to incorporate the
watermark into the signal itself, i.e., into the bitstream re-
presenting the video frames.
In the following, we present a scheme for watermarking

of previously encoded video that is compatible with the
scheme for watermarking of uncoded video given in the pre-
vious section. Again, for a more rigid but less comprehen-
sive formulation of the algorithm, please refer to [9].

3.1 Basic scheme

The principle of MPEG-2 video compression is motion-
compensated hybrid coding. I-frames are split into blocks
of 8 by 8 pixels which are compressed using the DCT, quan-
tization, zig-zag-scan, run-level-coding and entropy coding
(see Fig. 5). P- and B-frames are motion compensated and
the residual prediction error signal frames are split into
blocks of 8 by 8 pixels which are compressed in the same way
as blocks from I-frames. Instead of adding the watermark in
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Figure 5. Encoding of one 8x8 pixel block.

the pixel domain, we extract, for each encoded 8 � 8-block
of the video, the corresponding block from the watermark
signal. We then transform the watermark block using the



DCT, and add the two blocks in the transform domain. Fi-
gure 6 shows the corresponding generic block diagram. On
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the same, the predictions made from them are the same, and
the drift compensation signal is zero. The depicted scheme
works, but can be further simpli�ed. Motion-compensated
prediction can be regarded as a linear operation, if no clip-
ping is applied. Thus, the two MC prediction blocks of Fig.
8 can be consolidated into one. Additionally, entropy co-
ding and decoding can be moved out of the loop, yielding
the simpli�ed scheme of Fig. 9.
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